Глава 5
Основные энергетические системы
т
Всем растениям и животным требуется энергия. Человек получает энергию из пищи, которую потребляет. Независимо от того, едим ли мы самые свежие фрукты и овощи или уплетаем картофель по-французски и бифштекс по-гамбургски, каждый кусочек пищи обеспечивает наш организм необходимой энергией.
Без рассмотрения некоторых основных понятий энергии нельзя понять суть физиологии мышечной деятельности. В предыдущих главах мы узнали, что за движение нужно "платить". Мы "платим" АТФ — формой химической энергии, содержащейся в клетках нашего организма. АТФ образуется в результате процессов, имеющих собирательное название — метаболизм. Именно метаболизм — главная цель изучения в этой главе. Мы рассмотрим биохимические процессы, которые позволят нам выяснить, как наши мышцы используют пищу для образования энергии, необходимой для выполнения движений. Затем обсудим, как изучение образования и потребления энергии помогает разобраться во влиянии срочных и долговременных физических нагрузок на мышечную деятельность и физическую подготовленность.
В 1978 г. Том Ослер, всемирно известный бегун на марафонские и сверхмарафонские дистанции, пришел в Лабораторию по исследованию мышечной деятельности человека (университет Болл), чтобы подвергнуться исследованиям во время его попыток непрерывно бежать и идти в течение 72 ч. Проведенные измерения показали, что в первые часы выполнения работы мышцы спортсмена в качестве источника энергии использовали в основном углеводы. Затем они стали все больше и больше использовать жиры. Наконец, в последние 24 ч исследования почти всю энергию для мышечной деятельности обеспечивали жиры, несмотря на то, что спортсмен постоянно пил молоко с сахаром и ел праздничный пирог, размеры которого были 18х21 дюйм. Несмотря на то, что в первые 24 ч Том потребил пищу, энергетическая ценность которой превысила 9 000 ккал, он вынужден был прекратить свою попытку на 70-м часу, пробежав 200 миль, в состоянии изнеможения и истощения запасов энергии.
Многие словари определяют понятие "энергия" как способность выполнять работу, однако такое определение не дает информации о многих биологических функциях, зависящих от образования и освобождения энергии.
Существуют различные формы энергии:
• химическая;
• электрическая;
• электромагнитная;
• тепловая;
• механическая;
• ядерная.
Согласно законам термодинамики, все формы энергии взаимозаменяемы. Химическая энергия, например, может быть использована для образования электрической энергии в батарее, которая затем может использоваться для выполнения механической работы путем обеспечения питанием электродвигателя. Энергия не может быть ни создана, ни уничтожена. Она переходит из одной формы в другую и в конечном итоге превращается в тепло. Примерно 60 — 70 % всей энергии в организме человека превращается в тепло. Как же использует наш организм энергию, прежде чем она достигает своей последней фазы превращения?
ЭНЕРГИЯ ДЛЯ КЛЕТОЧНОЙ ДЕЯТЕЛЬНОСТИ
Источником всех видов энергии является энергия Солнца. Химические реакции, происходящие в растениях (фотосинтез), превращают энергию Солнца в химическую энергию. Употребляя в пищу овощи и фрукты, а также мясо животных, которые питаются растениями, мы получаем энергию. Энергия содержится в пищевых продуктах в виде углеводов, жиров и белков. Эти основные компоненты пищевых продуктов расщепляются в клетках нашего организма, освобождая энергию.
Поскольку энергия постепенно превращается в тепло, ее количество, высвобождаемое в результате биологических реакций, определяется по количеству образованного тепла. В биологических
85
системах энергия измеряется в килокалориях (ккал). Согласно определению, 1 ккал равна количеству тепловой энергии, необходимой для повышения температуры 1 кг воды с 1 до 15 °С. Например, при сжигании спички выделяется примерно 0,5 ккал, тогда как при полном сгорании 1 г углеводов выделяется 4,0 ккал.
Некоторое количество свободной энергии в клетках используется для развития и "ремонта" нашего организма. Такие процессы, как мы уже знаем, направлены на развитие мышечной массы под влияние тренировочных нагрузок и восстановление мышц после физических нагрузок или травм. Энергия также необходима для активного транспорта множества веществ, таких, как глюкоза и Са24' через клеточные мембраны. Активный транспорт необходим для функционирования клеток и поддержания гомеостаза. Определенное количество энергии используют миофибриллы для обеспечения скольжения филаментов актина и миозина, в результате которого производятся мышечное сокращение и сила, что мы уже рассматривали в главе 2.
ИСТОЧНИКИ ЭНЕРГИИ
Продукты питания состоят, в основном, из углерода, водорода, кислорода, а при наличии белков — из азота. Молекулярные связи в пищевых продуктах относительно слабые, и в случае расщепления освобождается небольшое количество энергии. Следовательно, продукты питания не используются непосредственно для потребностей клетки. Энергия молекулярных связей продуктов питания химически освобождается в клетках организма и хранится в виде высокоэнергетического соединения — аденозинтрифосфата (АТФ).
'у Образование АТФ позволяет клеткам со-т хранять энергию в этом высокоэнергети
ческом соединении
В покое энергия, необходимая нашему организму, обеспечивается за счет расщепления практически одинакового количества углеводов и жиров. Белки представляют собой "строительные блоки" и обычно обеспечивают функционирование клеток небольшим количеством энергии. При увеличении мышечного усилия в качестве источника энергии больше используются углеводы. При максимальной кратковременной нагрузке АТФ почти исключительно образуется за счет углеводов.
Углеводы
Зависимость мышц от углеводов во время физической нагрузки связана с их наличием, а также способностью мышечной системы их расщеплять.
Содержание углеводов в печени и скелетных мышцах ограничено; их достаточно для образования не более 2 000 ккал энергии. Это количество расходуется на то, чтобы пробежать 32 км (20 миль). Запасы жиров достаточны для образования более 70 000 ккал энергии
Углеводы в конечном итоге превращаются в глюкозу — моносахарид, который транспортируется кровью ко всем тканям организма. В состоянии покоя поглощенные углеводы попадают в мышцы и печень, а затем преобразуются в более сложную молекулу сахара — гликоген. Гликоген находится в цитоплазме до тех пор, пока клетки не используют его для образования АТФ. Гликоген, содержащийся в печени, может снова превращаться в глюкозу, она транспортируется кровью к активным тканям, где и происходит ее метаболизм (расщепление).
Содержание гликогена в печени и мышцах ограничено, и его запасы могут истощиться, если в рационе питания нет достаточного количества углеводов. Таким образом, восполнение запаса углеводов во многом зависит от пищевых источников крахмалов и Сахаров. Без достаточного потребления углеводов мышцы и печень лишаются своего основного источника энергии.
Жиры
Жиры и белки также используются в качестве источников энергии. В организме содержится значительно больше жиров, чем углеводов. Как видно из табл. 5.1, жировой резерв энергии в организме значительно превышает углеводный. Однако жиры менее доступны клеточному метаболизму, поскольку прежде всего должна быть расщеплена сложная форма — триглицерид — на основные компоненты: глицерин и свободные жирные кислоты. Только свободные жирные кислоты используются для образования АТФ.
Таблица 5.1. Запасы "топлива" и энергии в организме
Источник энергии
|
г
|
ккал
|
Углеводы
гликоген печени
мышечный гликоген
глюкоза в жидкостях организма
Всего
Жиры
подкожный
внутримышечный
Всего
|
110
250 15
|
0,451 1,025 0,062
1,538
70,980
1,465
|
375
7,800 0,161
|
7,961 72,445
|
Примечание. Оценка произведена на основании средней массы тела 65 кг с содержанием жира 12 %.
|
86
Как видно из рис. 5.1, из одного и того же количества жиров и углеводов образуется абсолютно разное количество энергии: соответственно 9 и 4 ккалт'. В любом случае интенсивность освобождения энергии из этих соединений слишком небольшая, чтобы удовлетворить потребности организма в энергии во время интенсивной мышечной деятельности.
Белки
Процесс превращения белков или жиров в глюкозу называется глюконеогенезом. В результате серии реакций белок может превратиться в жирные кислоты. Это — липогенез.
Белки обеспечивают 5 — 10 % энергии, необходимой для выполнения продолжительного физического упражнения. Для образования энергии используются лишь основные единицы белка-аминокислоты.
ИНТЕНСИВНОСТЬ ВЫСВОБОЖДЕНИЯ ЭНЕРГИИ
Чтобы быть полезной, энергия должна высвобождаться из химических соединений с контролируемой интенсивностью. Частично эта интенсивность определяется выбором источника энергии. Если используется большое количество энергии из одного источника, клетки рассчитывают главным образом именно на этот источник. Такое влияние наличия энергии называется эффектом массового воздействия.
Специальные ферменты обеспечивают более четкий контроль интенсивности высвобождения свободной энергии. Многие из них облегчают расщепление (катаболизм) химических соединений (рис. 5.2). Хотя названия ферментов довольно сложны, все они заканчиваются суффиксом -аза. Например, фермент, воздействующий на АТФ, называется аденозинтрифосфатаза (АТФаза).
Разобравшись с источниками энергии, рассмотрим, как сохраняется энергия. В следующем параграфе мы изучим, как образуется содержащее энергию соединение — АТФ.
Жиры
(свободные жирные кислоты)
Углеводы
1 г С6Н12О6 1 г С„НзА
4 ккал энергии 9 ккал энергии
В ОБЗОРЕ...
1. Около 60 — 70 % энергии в организме человека превращается в тепло. Остальное количество используется для выполнения механической работы и осуществления клеточной деятельности.
2. Мы получаем энергию из пищевых продуктов — углеводов, жиров и белков.
3. Получаемая из продуктов питания энергия содержится в высокоэнергетическом соединении — АТФ.
4. Углеводы обеспечивают около 4 ккал энергии на 1 г, тогда как жиры —около 9 ккалт"1, однако энергия, получаемая из углеводного источника, более доступна. Белки также обеспечивают организм энергией.
Молекула АБ
Фермент
Рис. 5.1. Образование энергии из 1 г углеводов и ] г жиров
Фермент
Рис. 5.2. Действие ферментов в катаболизме (расщеплении) соединений
87
Рис. 5.3
Структурный состав
молекулы АТФ с энергобогатыми фосфатными соединениями (а) и высвобождение энергии (б)
а ^АТФ^ = | Аденозин |— Энергия —(Р.)— Энергия —(Р.)—— Энергия —(Р.)
. АТФаза +
б | Аденозин~|-{р)—(Р}—(Р) ^—-^| Аденозин | - (Р)—(Р) + (р) + Энергия
АДФ
АТФ
БИОЭНЕРГЕТИКА: ОБРАЗОВАНИЕ АТФ
Молекула АТФ (рис. 5.3,а) состоит из аденози-на (молекулы аденина, соединенной с молекулой рибозы), соединенного с тремя группами неорганического фосфата (Р ). При воздействии фермента АТФазы последняя фосфатная группа отщепляется от молекулы АТФ, быстро высвобождая большое количество энергии (7,6 ккал-моль'' АТФ). В результате АТФ расщепляется на АДФ (аденозин-дифосфат) и фосфор (рис. 5.3,6). Однако где же находилась эта энергия в самом начале?
Процесс накопления энергии в результате образования АТФ из других химических источников называется фосфорилированием. Вследствие различных химических реакций фосфатная группа присоединяется к относительно низкоэнергетическому соединению — аденозиндифосфату, преобразуя его в аденозинтрифосфат. Когда эти реакции осуществляются без наличия кислорода, процесс называется анаэробным метаболизмом. Если же в реакции участвует кислород, процесс называется аэробным метаболизмом, а аэробное превращение АДФ в АТФ —окислительным фосфорилированием.
Клетки образуют АТФ с помощью трех систем: системы АТФ — КФ, гликолитической и окислительной систем.
СИСТЕМА АТФ - КФ
Простейшей энергетической системой является система АТФ — КФ. Кроме АТФ, клетки содержат еще одну богатую энергией фосфатную молекулу —креатинфосфат (КФ). Энергия, высвобождающаяся при расщеплении КФ, в отличие
от энергии, высвобождающейся при расщеплении АТФ, не используется непосредственно для выполнения работы на клеточном уровне. Она используется для ресинтеза АТФ, чтобы обеспечить его относительно постоянное образование.
Высвобождению энергии при расщеплении КФ содействует фермент креатинкиназа, который действует на КФ с целью отделения Р^ от креатина. Освобожденная энергия может быть использована для присоединения Р^ к молекуле АДФ и образования АТФ (рис. 5.4). При использовании этой системы (энергия высвобождается из АТФ в результате отщепления фосфатной группы) клетки могут предотвратить истощение запасов АТФ, расщепляя КФ, и тем самым обеспечивая энергию для образования большего количества АТФ.
Это быстрый процесс, который может осуществляться без помощи каких-либо специальных структур клетки. Он может протекать и с участием кислорода, однако для его осуществления кислород не нужен, поэтому систему АТФ — КФ называют анаэробной.
В первые секунды интенсивной мышечной деятельности количество АТФ поддерживается на относительно постоянном уровне, тогда как уровень КФ неуклонно снижается, поскольку он используется для пополнения запасов АТФ (рис. 5.5). В состоянии изнеможения уровни АТФ и КФ довольно низки и не могут обеспечить энергию для последующих сокращений и расслаблений мышц.
Таким образом, поддержание уровня АТФ за счет энергии, высвобождающейся при расщеплении КФ, ограничено. Запасы АТФ и КФ достаточны для удовлетворения энергетических потребностей мышц лишь в течение 3 — 15с спринтер-
Энергия
( аТФ)
Рис. 5.4
Поддержание уровня АТФ за счет энергии,
содержащейся вКФ
88
100
80
60
40
20
2 4 6 8 10 12 14
Время,с
Рис. 5.5. Изменения в мышечных АТФ и КФ в первые секунды максимального мышечного усилия
ского бега. После этого мышцам приходится рассчитывать на другие процессы образования АТФ:
гликолитический и окислительный.
ГЛИКОЛИТИЧЕСКАЯ СИСТЕМА
Другой источник получения АТФ предусматривает высвобождение энергии в результате расщепления (лизиса) глюкозы. Это — гликолитичес-кая система, включающая процесс гликолиза, т.е. расщепление глюкозы с помощью специальных гликолитических ферментов (рис. 5.6).
Глюкоза составляет около 99 % всех Сахаров, циркулирующих в крови. Она поступает в кровь в результате усвоения углеводов и расщепления гликогена печени. Гликоген синтезируется из глюкозы вследствие процесса, называемого гликогенезом. Гликоген содержится в печени или мышцах до тех пор, пока не потребуется. Когда возникает потребность в гликогене, он расщепляется в результате процесса гликогенолиза на глюкозо-1 -фосфат.
Прежде чем глюкоза или гликоген могут быть использованы для образования энергии, они должны трансформироваться в соединение, которое называется глюкозо-6-фосфат. Для превращения молекулы глюкозы необходима одна молекула АТФ. При расщеплении гликогена глюкозо-6-фосфат образуется из глюкозо-1 -фосфата без затраты энергии. Гликолиз начинается, как только образуется глюкозо-6-фосфат.
Заканчивается гликолиз образованием пиро-виноградной кислоты. Для этого процесса не нужен кислород, однако использование кислорода определяет "судьбу" пировиноградной кислоты, образованной вследствие гликолиза. Когда мы говорим о гликолитической системе, мы имеем в виду, что процесс гликолиза протекает без участия кислорода. В этом случае пировиноградная кислота превращается в молочную кислоту.
Гликолиз, являясь более сложным процессом, чем система АТФ — КФ, обеспечивает расщеп
ление гликогена на молочную кислоту благодаря 12 ферментным реакциям. Все эти ферменты находятся в цитоплазме клеток. В результате гликолиза образуется 3 моля АТФ на каждый моль расщепленного гликогена. Если вместо гликогена используется глюкоза, образуется всего 2 моля АТФ, поскольку один моль расходуется на превращение глюкозы в глюкозо-6-фосфат.
Эта энергетическая система не обеспечивает образование большого количества АТФ. Несмотря на это, сочетанные действия гликолитической системы и системы АТФ — КФ обеспечивают производство силы мышцами даже при ограниченном поступлении кислорода. Эти две системы доминируют в первые минуты выполнения упражнений высокой интенсивности.
Другим значительным недостатком анаэробного гликолиза является то, что он вызывает накопление молочной кислоты в мышцах и жидкостях организма. В спринтерских дисциплинах продолжительностью 1 — 2 мин потребности гликолитической системы высоки, и уровни содержания молочной кислоты могут увеличиться с 1 (показатель в состоянии покоя) до более чем 25 ммоль-кг'. Такое подкисление мышечных волокон тормозит дальнейшее расщепление гликогена, поскольку нарушает функцию гликолитических ферментов. Кроме того, кислота снижает способность волокон связывать кальций и это может препятствовать сокращению мышц.
Интенсивность энергозатрат мышечного во-
Глюкоза Гликоген
Глюкозо-6-фосфат
Гликолитические ферменты
АТФ
Пировиноградная кислота
Молочная кислота
Рис. 5.6. Процесс гликолиза
99
Молочная кислота и лактат — не одно и то же соединение. Молочная кислота имеет формулу СдНдОд. Лактат представляет собой любую соль молочной кислоты. Когда молочная кислота теряет Н^ оставшееся соединение, соединяясь с Nа+ или К^ образует соль. В результате анаэробного гли-колиза образуется молочная кислота, которая очень быстро разлагается и образует соль — лактат. Из-за этого очень часто одно понятие используют вместо другого
локна во время нагрузки может быть в 200 раз выше, чем в состоянии покоя. Гликолитическая система и система АТФ — КФ не в состоянии обеспечить необходимое количество энергии. Без другой энергетической системы наша способность выполнять мышечную деятельность была бы ограничена всего несколькими минутами. Рассмотрим третью энергетическую систему.
ОКИСЛИТЕЛЬНАЯ СИСТЕМА
Последней системой образования энергии клеткой является окислительная система, наиболее сложная из трех энергетических систем. При ее рассмотрении мы опустим обременительные подробности. Процесс, в результате которого организм для производства энергии диссимилирует соединения, богатые энергией, с помощью кислорода называется клеточным дыханием. Это аэробный процесс, поскольку в нем участвует кислород. АТФ образуется в специальных клеточных органеллах — митохондриях. В мышцах они примыкают к миофибриллам, а также разбросаны по саркоплазме.
Мышцам необходимо постоянное обеспечение энергией для производства силы во время продолжительной мышечной деятельности. В отличие от анаэробного образования АТФ окислительная система производит значительное количество энергии, поэтому аэробный метаболизм — основной метод образования энергии во время мышечной деятельности, требующей проявления выносливости. Это предъявляет повышенные требования к системе транспорта кислорода к активным мышцам.
В ОБЗОРЕ...
1. Три энергетические системы обеспечивают образование АТФ:
• система АТФ — КФ;
• гликолитическая система;
• окислительная система.
2. В системе АТФ — КФ Р^ отделяется от кре-атинфосфата под действием креатинкиназы. Р^ затем может соединиться с АДФ, образуя АТФ. Это анаэробная система, главная функция которой — поддержание уровня АТФ. Величина высвобождения энергии составляет 1 моль АТФ на 1 моль КФ.
3. Гликолитическая система включает процесс гликолиза, посредством которого глюкоза или гликоген расщепляется на пировиноградную кислоту с помощью гликолитических ферментов. Если в процессе не участвует кислород, пирови-ноградная кислота превращается в молочную кислоту. Из 1 моля глюкозы образуется 2 моля АТФ, тогда как из 1 моля гликогена — 3 моля АТФ.
4. Гликолитическая система и система АТФ — КФ — основные источники энергии в первые минуты выполнения физического упражнения высокой интенсивности.
Окисление углеводов
Окислительное образование АТФ (рис. 5.7) включает три процесса:
1)гликолиз;
2) цикл Кребса;
3) цепочку переноса электронов.
Гликолиз при обмене углеводов играет важную роль как в анаэробном, так и аэробном образовании АТФ. Причем он протекает одинаково, независимо от того, участвует ли в процессе кислород. Участие кислорода определяет лишь "судьбу" конечного продукта — пировиноградной кислоты. Вспомним, что при анаэробном глико-лизе образуется молочная кислота и всего 3 моля АТФ на 1 моль гликогена. При участии кислорода пировиноградная кислота превращается в соединение, которое называется ацетил-кофермент А (ацетил-КоА).
Поделитесь с Вашими друзьями: |