ЛЕКЦИЯ № 1 по теме «Обмен углеводов»
Введение в обмен веществ. Обмен углеводов
Пашутин В.В. «Едва ли можно, без вреда для всяких тканей тела лишить человека доставки хотя бы небольшого количества углеводов» 1902г
План:
-
Введение в обмен веществ
-
Углеводы и их роль
-
Переваривание и всасывание углеводов
-
Превращение глюкозы в тканях
-
Пути окисления глюкозы. Анаэробный гликолиз энергетический баланс
Введение в обмен веществ
Обмен веществ – это совокупность тесно связанных между собой противоположных процессов – ассимиляции (анаболизм) и диссимиляции (катаболизм). Обмен веществ включает 4 этапа: 1 этап – переваривание. Это механическое и ферментативное расщепление сложных веществ, которое происходит в ЖКТ под действием соответствующих гидролаз; 2 этап – всасывание – это транспорт продуктов распада из просвета кишечника во внутреннюю среду организма. Всасывание осуществляется через мембраны микроворсинок тонкого кишечника и бывает активным и пассивным (механизмы транспорта через мембраны см. микролекцию «Б/х мембран», дать ксерокс или дискету).
3 этап – промежуточный обмен – это превращение в клетках или тканях организма всосавшихся веществ; 4 этап – выделение конечных продуктов обмена.
Углеводы и их роль
На долю углеводов должно приходиться 50% калорийности суточного рациона. Соотношение белков, липидов и углеводов в пище должно быть (Б:Л:У) – 1:1:4, т.е. в сутки должно поступать 400-500 г углеводов, или 124 г на 1000 ккал рациона в сутки. При этом желательно, чтобы легкоусвояемые дисахариды составляли не более 25% от этого количества. Переедание легкоусвояемых угв является риском развития ожирения и атеросклероза.
Углеводы могут синтезироваться в организме из промежуточных продуктов распада белков и липидов. Единственное производное углеводов, которое обязательно должно поступать с пищей и не синтезируется в организме человека – это витамин С.
Различают следующие пищевые угв 1) 80% приходится на долю крахмала – резервного полисахарида растений. 2) В продуктах животного происхождения содержится гликоген – «животный крахмал». 3) пищевые волокна – целлюлоза, гемицеллюлоза, лигнин, смолы, пектины, пентозаны. С пищей также поступают дисахариды – 4) сахароза, или тростниковый сахар, 5) лактоза, или молочный сахар, а также мсх – 6) глюкоза – виноградный сахар и 7) фруктоза – фруктовый сахар. Этих мсх также много в меде. 8) В составе НП в организм поступают пентозы.
Роль углеводов пищи 1) энергетическая – 99% потребляемых угв используется на производство энергии. Окисление 1г углеводов дает 17,2кДж (4,1ккал) энергии; 2) пластическая, строительная, или структурная – ГАГи, ГП и другие белки (почти все белки организма имеют в своем составе угв, НК, липиды, НЗТ, Коf, глюкуронаты, ГЛ мембран; 3) резервная – гликоген запас глюкозы; 4) сигнальная – угв входят в состав рецепторов (их узнающей части) и в состав ряда гормонов, например, ТТГ, ФСГ. Угв обеспечивают антигенность тканей. 5) пищевые волокна способствуют задержке воды при прохождении пищи по кишечнику и формированию благодаря этому объемных мягких фекалий. Диета, богатая пищевыми волокнами (клетчаткой) снижает вероятность возникновения дивертикулеза, рака толстой кишки, сердечно-сосудистых заболеваний и сахарного диабета. Целлюлоза и лигнин хорошо действуют на функцию толстой кишки, а смолы и пектины снижают уровень ХСН в крови, возможно, благодаря связыванию ЖчК и ХСН пищи. Смолы и пектины препятствуют опорожнению желудка, замедляют и снижают подъем уровня глюкозы в крови после приема пищи и последующим уменьшением секреции инсулина.
Переваривание и всасывание угв
1 этап – переваривание В ротовой полости начинается переваривание крахмала и гликогена пищи под действием альфа-амилазы слюны. В желудке нет гликозидаз, но пищевой комок подвергается распаду под действием альфа-амилазы слюны до тех пор, пока не пропитается кислым содержимым желудка. При этом альфа-амилаза слюны ингибируется, т.к. рН желудка не соответствует оптимуму рН данного фермента. В кишечнике рН 8,0-9,0 и действие альфа-амилазы слюны возобновляется. Сюда же поступает альфа-амилаза поджелудочной железы и оба фермента расщепляют крахмал и гликоген до мальтозы. В кишечнике мальтоза расщепляется до 2-х глюкоз под действием мальтазы (образуется кишечными клетками) – реакцию повторить (стр. 32, Материалы). Здесь же под влиянием лактазы кишечного сока лактоза расщепляется до галактозы и глюкозы – реакцию повторить (стр. 32, Материалы). У детей раннего возраста благодаря замедленному гидролитическому расщеплению, лактоза способствует поддержанию слабокислой среды в толстой кишке (рН – 5,0-5,5). Под действием сахаразы кишечного сока сахароза расщепляется до фруктозы и глюкозы – реакцию повторить (стр. 32, Материалы). Переваривание НК дает пентозы.
Т.о., все углеводы пищи перевариваются в кишечнике до гексоз. Все процессы переваривания идут на поверхности эпителия кишечника и поэтому называются пристеночным пищеварением.
2 этап – всасывание продуктов переваривания. Мсх всасываются микроворсинками эпителия тонкого кишечника с различной скоростью. Первой всасывается галактоза, затем глюкоза, фруктоза и пентозы. Различие в скорости всасывания зависит от типа всасывания. Галактоза и глюкоза всасываются путем активного транспорта.
Щеточная каемка энтероцитов содержит несколько транспортных систем, некоторые очень схожи с таковыми в почках, служащие для реабсорбции глюкозы и аминокислот. Натрий-зависимый глюкозный транспортер связывает глюкозу и натрий в разных центрах и транспортирует их через плазматическую мембрану кишечной клетки. Натрий транспортируется по градиенту концентрации, а глюкоза транспортируется против градиента концентрации. Энергия, необходимая для активного транспорта, образуется за счет гидролиза АТФ в результате работы натрий-калиевой АТФ-азы (натрий-калиевого насоса). Этот фермент обменивает натрий цитоплазмы на калий. Затем натрий удаляется из цитоплазмы кишечной клетки в межклеточное пространство с помощью натрий-калиевого насоса в обмен на калий. Таким образом, галактоза и глюкоза всасываются активно (против градиента концентрации) натрий-зависимым транспортом с помощью особого белка – натрий-зависимого глюкозного транспортера.
Фруктоза всасывается пассивно путем облегченной диффузии с помощью белка-переносчика – GLUT-5. Если галактозы и глюкозы поступает много, то и эти моносахариды могут пассивно всасываться с помощью этого белка.
Из кишечной клетки галактоза, глюкоза и фруктоза транспортируются в воротную вену путем облегченной диффузии с помощью белка-переносчика – GLUT-2 – см. пленку (рис по Марри).
Пентозы всасываются путем простой диффузии (пассивно).
Т.о., в крови воротной вены имеются различные мсх, их качество зависит от вида принимаемой пищи. Количество их также сильно варьирует – в разгар пищеварения их много, натощак мало. Мсх быстро поглощаются паренхиматозными клетками печени, где происходит превращение всех мсх в глюкозу. Т.о., глюкоза – единственный мсх, поступающий в большой круг кровообращения. В крови БКК у детей раннего возраста возможно небольшое количество других МСХ, например, фруктозы и галактозы. Это связано с незрелостью печени и глюкогенеза
3 этап ОУ – промежуточный обмен
Превращение глюкозы в тканях В транспорте глюкозы между клетками и кровью играют роль белки-переносчики. Эти белки обозначаются GluT и пронумерованы по порядку их обнаружения. Они осуществляют транспорт глюкозы между клетками и кровью по градиенту концентрации (в отличие от переносчиков, транспортирующих мсх при их всасывании в кишечнике против градиента концентрации). GluT1 находится в эндотелии ГЭБ. Он служит для обеспечения глюкозой мозга. GluT2 в стенке кишечника, печени и почках – органах, осуществляющих выделение глюкозы в кровь. GluT3 находится в нейронах мозга. GluT4 – главный переносчик глюкозы в мышцах и адипоцитах. GluT5 находится в тонкой кишке, подробности его функции неизвестны.
Особенно интенсивно используют глюкозу следующие клетки и ткани: 1) нервная ткань, т.к. для нее глюкоза - единственный источник энергии, 2) мышцы (для выработки энергии на сокращения), 3) стенка кишечника (процессы всасывания различных веществ требуют затраты энергии), 4) почки (образование мочи – процесс энергозависимый), 5) надпочечники (необходима энергия для синтеза гормонов); 6) эритроциты; 7) жировая ткань (глюкоза необходима для нее как источник глицерина для образования ТАГ); 8) молочная железа, особенно в период лактации (глюкоза необходима для образования лактозы).
В тканях около 65% глюкозы окисляется, 30% идет на липонеогенез, 5% на гликогеногенез.
Глюкостатическая функция печени обеспечивается тремя процессами: 1) гликогеногенезом, 2) гликогенолизом, 3) глюконеогенезом (синтез глюкозы из промежуточных продуктов распада белков, липидов, углеводов).
При увеличении глюкозы в крови ее избыток используется на образование гликогена (гликогеногенез). При уменьшении содержания глюкозы в крови усиливается гликогенолиз (распад гликогена) и глюконеогенез. Под действием алкоголя глюконеогенез тормозится, что сопровождается падением глюкозы в крови при большом количестве выпитого алкоголя. Клетки печени, в отличие от других клеток способны пропускать глюкозу в обоих направлениях в зависимости от концентрации глюкозы в межклеточном веществе и крови. Т.о., печень выполняет глюкостатическую функцию, поддерживая постоянство содержания глюкозы в крови, которое равно 3,4-6,1 мМ/л. До 10-14 дней после рождения отмечается физиологическая гипогликемия, это связано с тем, что связь с матерью после родов прекратилась, а своих запасов гликогена мало.
Гликогеногенез 5% глюкозы превращается в гликоген. Образование гликогена называется гликогеногенезом. 2/5 запасов гликогена (примерно 150 грамм) откладывается в паренхиме печени в виде глыбок (10% на сырую массу печени). Остальной гликоген откладывается в мышцах и других органах. Гликоген служит резервом УГВ для всех органов и тканей. Запас УГВ в виде гликогена обусловлен тем, что гликоген как ВМС в отличие от глюкозы не повышает осмотического давления клеток.
Гликогеногенез - сложный, многоступенчатый процесс, который состоит из следующих стадий – реакции знать (только текст)см. материалы стр.35:
1 – Образование глюкозо-6-фосфата – в печени под действием глюкокиназы, а в других тканях под действием гексокиназы глюкоза фосфорилируется и превращается в глюкозо-6-фосфат (реакция необратимая).
2 – Превращение глюкозо-6-фосфата в глюкозо-1-фосфат Под действием фосфоглюкомутазы из глюкозо-6-фосфата образуется глюкозо-1-фосфат (реакция обратимая).
3 – Образование УДФ-глюкозы – глюкозо-1-фосфат взаимодействует с УТФ под действием УДФГ-пирофосфорилазы и образуется УДФ-глюкоза и пирофосфат (реакция обратимая)
4 – Удлинение цепи гликогена начинается с включения в работу фермента гликогенина: УДФ-глюкоза взаимодействует с ОН группой тирозина в составе фермента гликогенина (УДФ отщепляется и в дальнейшем при перефосфорилировании вновь дает УТФ). Затем гликозилированный гликогенин взаимодействует с гликогенсинтазой, под действием которой к первому остатку глюкозы через 1-4 связь присоединяется еще до 8 молекул УДФ-глюкозы. При этом УДФ отщепляется (реакции см. стр. 123 - Биохимия в схемах и рисунках, 2изд. – Н.Р. Аблаев).
5 - Ветвление молекулы гликогена – под действием амило(14)(16)-трансглюкозидазы происходит образование альфа(16)-гликозидной связи (см. пленку, не списывать).
Таким образом, 1) в образовании зрелой молекулы гликогена принимают участие гликогенсинтетаза и амилотрансглюкозидаза; 2) для синтеза гликогена требуется много энергии - для присоединения 1молекулы глюкозы к фрагменту гликогена используется 1молекула АТФ и 1 молекула УТФ; 3) для инициации процесса обязательно наличие затравки гликогена и екоторые специализированные белки-праймеры; 4) этот процесс не безграничен – избыток глюкозы превращается в липиды.
Гликогенолиз Процесс распада гликогена осуществляется 2 путями: 1 путь – фосфоролиз, 2 путь – гидролиз.
Фосфоролиз происходит во многих тканях (сразу пишем реакции, на откр. Только текст). При этом к крайним молекулам глюкозы присоединяются фосфорные кислоты и одновременно происходит их отщепление в виде глюкозо-1-фосфатов. Ускоряет реакцию фосфорилаза. Глюкозо-1-фосфат затем переходит в глюкозо-6-фосфат, который не проникает через клеточную мембрану и используется только там где образовался. Такой процесс возможен во всех тканях кроме печени, в которой много фермента глюкозо-6-фосфатазы, который ускоряет отщепление фосфорной кислоты и при этом образуется свободная глюкоза, которая может поступать в кровь - показать на пленке, реакции знать, см. материалы стр.36-37 (на откр. не списывать).
! Обязательно в виде текста - Фосфорилаза не действует на альфа(16)гликозидные связи. Поэтому окончательное разрушение гликогена осуществляется амило-1,6-глюкозидазой. Этот фермент проявляет 2 вида активности. Во-первых, активность трансферазы, которая переносит фрагмент из 3-х молекул глюкозы с альфа(16)положения в альфа(14)положение. Во-вторых, активность глюкозидазы, которая ускоряет отщепление свободной глюкозы на уровне альфа(16) гликозидной связи (см. пленку).
Второй путь гликогенолиза – гидролиз, осуществляется преимущественно в печени под действием гамма-амилазы. При этом происходит отщепление крайней молекулы глюкозы от гликогена и свободная глюкоза может поступать в кровь реакции знать, см. материалы стр. 37, показать на пленке.
Т.о., в результате гликогенолиза образуется или глюкозо-монофосфат (при фосфоролизе) или свободная глюкоза (при гидролизе), которые используется на синтетические процессы или подвергаются распаду (окислению).
Пути окисления глюкозы. Анаэробный гликолиз, энергетический баланс
Распад глюкозы (окисление): идет 2 путями – 2/3 глюкозы окисляется гликолитическим путем. 1/3 глюкозы окисляется пентозофосфатным путем – показать на пленке.
Гликолитический путь окисления глюкозы (гликолиз). Первоначально термином «гликолиз» обозначали только анаэробное брожение, завершающееся образованием лактата или этанола и СО2. В настоящее время понятие «гликолиз» используется более широко для описания распада глюкозы, проходящего через образование глюкозо-6-фосфата, фруктозо-1,6-дифосфата и пирувата как в отсутствие, так и в присутствии кислорода. В последнем случае употребляют термин «аэробный гликолиз» в отличие от «анаэробного гликолиза», завершающегося образованием лактата.
При анаэробном гликолизе из 1 молекулы глюкозы образуется 2 молекулы лактата и 2 АТФ. При аэробном гликолизе из 1 молекулы глюкозы образуется 36 или 38 АТФ, выделяется 6 СО2 и 6 Н2О. Пентозофосфатный цикл осуществляется в анаэробных условиях, в результате этого процесса выделяется 6СО2 и 12НАДФН2. НАДФН2 необходимы для восстановительного синтеза.
Анаэробный гликолиз, или фосфотриозный путь, или шунт Эмбдена-Мейерхофа включает 10 реакций. Ступенчатое окисление глюкозы создает возможность не только преодоления при обычной температуре порога энергии активации отдельных реакций, но и рационального использования энергии, освобождающейся здесь не в форме взрыва, а шаг, за шагом, отдельными порциями. На основе гликолиза возникло кислородное дыхание. Гликолиз – это древнее усилие природы использовать энергию – студенты пишут отдельно реакции формулами, а пояснение к реакциям в тексте лекции (как ЦТК).
1 реакция - глюкоза фосфорилируется под действием фермента глюкокиназы (в печени) или гексокиназы (в других тканях)
2 реакция – глюкозо-6-фосфат изомеризуется во фруктозо-6-фосфат под действием фосфогексоизомеразы; этот фермент действует на молекулу с открытой линейной конфигурацией
3 реакция - фруктозо-6-фосфат необратимо фосфорилируется во фруктозо-1,6-дифосфат под действием фосфофруктокиназы, которая также действует на молекулу с открытой конфигурацией
4 реакция – фруктозо-1,6-дифосфат под действием альдолазы расщепляется на 2 фосфотриозы – ФГА и ДОАФ, реакция обратимая
ДОАФ может участвовать в синтезе ТАГ и ФЛ, восстанавливаясь до глицерофосфата, также участвует в глицерофосфатном челночном механизме, но основная его масса переходит в ФГА
5 реакция – ФГА окисляется с участием НАД и фосфорилируется. При этом энергия окисления трансформируется в макроэргическую связь 1,3 дифосфоглицерата.
6 реакция – 1,3-дифосфоглицерат реагирует с АДФ, отдает ей остаток фосфорной кислоты и выделяется АТФ. Так происходит субстратное фосфорилирование и образуется 3-фосфоглицерат, реакцию ускоряет фосфоглицераткиназа
7 реакция – под влиянием фосфоглицеромутазы остаток фосфорной кислоты переносится с С3 на С2 и образуется 2-фосфоглицерат
8 реакция – 2-фосфоглицерат дегидратируется енолазой. При этом за счет внутримолекулярной ОВР энергия аккумулируется в виде макроэргической связи в фосфоенолпирувате. Енолаза ингибируется ионами фторида; этим пользуются в тех случаях, когда необходимо остановить гликолиз, например, перед определением содержания глюкозы в крови. Енолаза нуждается в ионах магния и марганца:
9 реакция – ФЕП передает остаток фосфорной кислоты на АДФ, при этом образуется енолпируват и выделяется АТФ, вновь происходит субстратное фосфорилирование. Реакция ускоряется пируваткиназой. Енолпируват спонтанно превращается в ПВК.
10 реакция - ПВК в анаэробных условиях восстанавливается в молочную кислоту (лактат)
Энергетический баланс анаэробного гликолитического окисления глюкозы
Если процесс гликолиза начинается с глюкозы, то на образование фруктозо-6-фосфата и фруктозо-1,6-дифосфата затрачивается 2 молекулы АТФ. Т.к., в результате гликолиза образуется 4 АТФ, следовательно, в чистом виде запасается 2 АТФ. Если процесс гликолиза начинается с глюкозо-6-фосфата, образованного при распаде гликогена, затрачивается 1 АТФ для образования фруктозо-1,6-дифосфата, тогда выделяется 3 АТФ.
Значение гликолиза
-
У плода и в первые месяцы жизни преобладает анаэробный распад (окисление) глюкозы. Поэтому уровень лактата у новорожденных больше, чем у взрослых.
-
В некоторых тканях анаэробный гликолиз является основным источником энергии, например, в эритроцитах, хрусталике, сетчатке, мозговом веществе почек
-
Для большинства тканей - это аварийный путь, т.к. обеспечивает энергией в условиях гипоксии и аноксии, например в высокогорье, при интоксикации, анемии, болезнях органов дыхания, ССС, отравлении угарным газом, тяжелом физическом труде
-
Некоторые метаболиты гликолиза используются на синтетические процессы, например, фосфотриозы, ПВК, лактат могут использоваться на образование глюкозы – глюконеогенез; липонеогенез и синтез заменимых аминокислот
Литература – основная и дополнительная (список литературы общий для всей темы)
-
Березов Т.Т., Коровкин Б.Ф. «Биологическая химия», 1998 – С. 169-186, 319-359.
-
Полосухина Т.Я., Аблаев Н.Р. «Материалы к курсу биологической химии», 1977 – С.30-44.
-
Плешкова С.М., Абитаева С.А., Ерджанова С.С., Петрова Г.И. «Практикум по биологической химии», 2003 – лаб.раб.№№ 66, 67, 74.
-
Сеитов З.С. «Биохимия», 2000 – С. 480-506, 517-522.
-
Зайчик А.Ш., Чурилов Л.П. «Основы патохимии»2000 – С.218-245.
-
Бышевский А.Ш., Терсенов О.А. «Биохимия для врача» 1994 – С.308-312, 222-224, 227, 75-95
-
Harper’s Biochemistry – R.K. Murray, D.K. Granner, P.A. Mayes, V.W. Rodwell - APPLETON&LANGE, Stamford, Connecticut, 2000
-
Биохимия человека – Р. Марри, Д. Греннер, П. Мейес, В. Родуэлл – М., Мир, 1993
-
Шарманов Т.Ш., Плешкова С.М. – Метаболические основы питания с курсом общей биохимии - Алматы, 1998
ЛЕКЦИЯ № 2 по теме «Обмен углеводов»
План:
-
Глюконеогенез, цикл Кори
-
Аэробное окисление глюкозы, энергетический баланс
-
Пентозофосфатный цикл окисления глюкозы
-
Выделение конечных продуктов обмена углеводов
Глюконеогенез, цикл Кори
Большая часть лактата подвергается глюконеогенезу в печени. Т.о., гликогенолиз, гликолиз и глюконеогенез составляют взаимосвязанную систему, направленную на поддержание гомеостаза и образуют цикл Кори – (пленка)
Значение цикла Кори заключается в том, что богатая энергией молекула лактата не теряется, а превращается в глюкозу.
Глюкозо-аланиновый цикл
Глюкоза, поступая в мышцы, окисляется до ПВК и лактата. При переаминировании ПВК с глу образуется аланин, он выходит в кровь и поступает в печень, где под действием АЛТ вновь превращается в ПВК. ПВК используется в глюконеогенезе. Т.о., в кровь из печени выходит глюкоза, которая вновь поступает в мышцы и в них окисляется до ПВК, которая переаминируясь дает аланин (пленка).
Глюконеогенез
Наиболее интенсивно процесс протекает в печени и корковом слое почек. Этот процесс можно считать в какой-то степени противоположно направленными реакциями анаэробного гликолиза. Только три реакции анаэробного гликолиза необратимы: это реакции, катализируемые гексокиназой, фосфофруктокиназой и пируваткиназой; на этих стадиях при глюконеогенезе происходит обход необратимых реакций с помощью других ферментов. ПВК не может перейти в ФЕП, для этого существует первый обходной путь – «образование ФЕП из ПВК» - протекает в митохондриях и цитозоле. При карбоксилировании ПВК образуется ЩУК – это ключевая реакция глюконеогенеза, ускоряется пируваткарбоксилазой. Активность данного фермента регулируется уровнем АУК, при нехватке АУК, пируваткарбоксилаза почти неактивна – показать на (пленке)
ЩУК декарбоксилируется и фосфорилируется за счет ГТФ и образует ФЕП – показать на пленке
ФЕП включается в реакции, обратные гликолизу до образования фруктозо-1,6-дифосфата. 2 обходной путь - фруктозо-1,6-дифосфат дефосфорилируется и образует фруктозо-6-фосфат. Эта реакция ускоряется бифункциональным ферментом, который способен катализировать как распад фруктозо-1,6-дифосфата, так и его образование из фруктозо-6-фосфата. Реакция регулируется уровнем АМФ, глицерол-3-фосфатом, цАМФ. При высоком содержании АТФ и низком уровне АМФ реакция ускоряется.
Фруктозо-6-монофосфат изомеризуется в глюкозо-6-монофосфат. 3 обходной путь - под влиянием глюкозо-6-фосфатазы глюкозо-6-монофосфат дефосфорилируется и образует глюкозу. Глюкозо-6-монофосфат может также переходить в глюкозо-1-монофосфат и участвовать в синтезе гликогена.
Значение глюконеогенеза
-
образование из лактата и других веществ глюкозы в тех случаях, когда УГВ мало (УГВ или полное голодание);
-
поддержание гомеостаза (из крови извлекаются ПВК, лактат, глюкогенные АК, которые превращаются в глюкозу). При различных патологических состояниях печени и почек (жировая инфильтрация, гепатит, цирроз, нефросклероз, нефриты) глюконеогенез нарушается. При этом в крови накапливается лактат, развивается ацидоз
Аэробное окисление глюкозы, энергетический баланс
Окисление глюкозы в аэробных условиях можно условно разделить на 5 этапов: 1. Окисление глюкозы до ПВК – см. анаэробный гликолиз. 2 этап – это окислительное декарбоксилирование ПВК с образованием АУК – реакцию повторить. 3 этап – использование 90% АУК в ЦТК, где образуются 3 НАДН2 и ФПН2, участвующие в следующем этапе. 4 этап – БО, где образуется энергия и эндогенная вода. 5 этап – ОФ, при котором образуется АТФ.
Т.о., до стадии образования ПВК глюкоза окисляется анаэробно. ПВК может быть использована в реакции карбоксилирования для получения ЩУК или использоваться в реакциях переаминирования для синтеза заменимых аминокислот – повт. Реакции. В аэробных условиях ПВК поступает в митохондрии и подвергается окислительному декарбоксилированию с образованием АУК.
Энергетический баланс аэробного окисления глюкозы
На откр.лекции - При гликолизе, который протекает в цитозоле образуется 2 АТФ и 2 НАДН2. При аэробном окислении 1 молекулы глюкозы образуется 2 молекулы ПВК, которые диффундируют в митохондрии и подвергаются окислительному декарбоксилированию с образованием 2 молекул АУК. При этом образуется 2 молекулы НАДН2, которые окисляются в БО, давая 6 АТФ. 2 АУК окисляются в ЦТК, давая 6 НАДН2, 2ФПН2 и 2АТФ, что в сумме даст 24АТФ. Т.о., в митохондриях получается 24+6=30АТФ. 30АТФ+2АТФ(полученные в цитозоле при гликолизе)=32АТФ. Еще 4 или 6 АТФ получается при окислении цитозольных НАДН2, образованных при гликолизе в результате глицерофосфатного (4) или малатного (6) шунтов - показать на пленке
Процесс окисления цитозольных НАДН2 связан с работой челночных механизмов.
Различают глицерофосфатный и малатаспартатный челночный механизмы. Чаще наблюдается первый.
В результате глицерофосфатного челночного механизма происходит окисление цитозольного НАДН2 и восстановление ДОАФ в глицерофосфат. Глицерофосфат способен проходить через мембраны митохондрий. В митохондриях с участием ФП происходит окисление глицерофосфата и образуется вновь ДОАФ, который выходит из митохондрий в цитоплазму и вновь участвует в окислении цитозольных НАДН2. ФПН2 окисляются в цепи БО и дают по 2 АТФ – показать на пленке
Т.к., при окислении 1 молекулы глюкозы образуется 2 цитозольных НАДН2, то при данном челночном механизме образуется 4 АТФ.
Малатаспартатный шунт в основном находится в печени, почках и сердце. Этот шунт протекает с участием МДГ и АСТ. При этом цитозольные НАДН2 окисляются с участием ЩУК, которые под действием цитозольной МДГ (НАД-зависимый ПФ) восстанавливается в малат (яблочную кислоту).
Малат проходит через митохондриальную мембрану в обмен на альфа-кетоглутаровую кислоту, т.е. действует дикарбонатный антипорт (альфа-кетоглутаровый траснпортер). В митохондриях малат подвергается окислению под действием митохондриальной МДГ и образуется вновь ЩУК. При этом НАД восстанавливается. В цепи БО и ОФ 1 НАДН2 дает 3 АТФ. Поскольку при окислении 1 молекулы глюкозы образуется 2 цитозольных НАДН2, всего при малатном механизме выделяется 6 АТФ. ЩУК из митохондрий выйти не может, поэтому под действием митохондриальной АСТ: ЩУК + ГЛУ↔ альфаКГ + АСП. Аспаргиновая кислота с помощью глутамат-аспартатного антипорта выходит в цитоплазму. В цитоплазме под действием цитозольной АСТ и альфа-КГ вновь образуется ЩУК и ГЛУ. ЩУК используется для челночного механизма, а ГЛУ с помощью глутамат-аспартатного антипорта входит в митохондрии – показать пленку.
Т.о., энергетический баланс аэробного окисления 1 молекулы глюкозы составляет 36 АТФ (при использовании глицерофосфатного челночного механизма) или 38 АТФ (при использовании малатного челночного механизма).
Эффект Пастера – это снижение скорости гликолиза в присутствии кислорода, т.е. при наличии кислорода окисление глюкозы происходит аэробно. В результате скорость потребления глюкозы в присутствии кислорода снижается. В основе эффекта лежит уменьшение количества АДФ и неорганического фосфата и увеличение АТФ (т.к. в аэробных условиях усиливается процесс ОФ), что ведет к подавлению гликолиза.
Пентозофосфатный цикл окисления глюкозы
Это сложный процесс, протекающий в цитоплазме с участием многочисленных ферментов. Этот процесс протекает в анаэробных условиях, в реакции вступают 6 молекул глюкозо-6-монофосфата, окисление сопровождается образованием 6 молекул СО2, 12 НАДФН2 и промежуточных продуктов, таких как фруктозо-6-фосфат, ФГА, пентозы.
Различают 3 этапа пентозного цикла, каждый этап включает несколько реакций.
1 этап – окислительная фаза – осуществляется дегидрогеназно-декарбоксилазной системой. Эта фаза начинается с дегидрирования глюкозо-6-монофосфата с помощью глюкозо-6-фосфатаДГ-азы (НАДФ). При этом образуются восстановленные НАДФН2 и фосфоглюконолактон, который дегидрируется и декарбоксилируется и через ряд промежуточных реакций превращается в пентозо-5-фосфат.
2 этап – катализируется изомеразами. На этом этапе происходит изомеризация пентозофосфатов.
3 этап – участвуют ферменты структурной перестройки углеводов. Образуются УГВ с различным количеством «С», в этих реакциях участвуют транскетолазы (Коf витВ1). В качестве промежуточных продуктов ПФЦ образуются 2 молекулы ФГА и 4 молекулы фруктозо-6-монофосфата. Эти продукты могут включаться в гликолиз, а в основном 2 ФГА образуют фруктозо-6-монофосфат, и количество фруктозо-6-монофосфатов увеличивается до 5. 5 молекул фруктозо-6-монофосфатов изомеризуются до глюкозо-6-монофосфатов. Глюкозо-6-монофосфат может снова включаться в ПФЦ, для этого надо снова добавить еще одну молекулу глюкозо-6-монофосфата. Пентозный цикл см. материалы стр. 43 – показать схему на пленке
Значение пентозофосфатного пути окисления глюкозы:
-
За счет ПФЦ примерно 50% покрывается потребность организма в НАДФН2. НАДФН2, образованный в цикле, может использоваться для следующих процессов – 1. В реакциях биосинтеза СЖК, ХСН, КС и оксида азота 2. В реакциях гидроксилирования при обезвреживании ксенобиотиков и некоторых эндогенных метаболитов, 3. В реакции восстановительного амминирования для обезвреживания аммиака и образование заменимых аминокислот. 4. Для восстановления окисленного ГЛТ при участии ФАД-зависимого фермента ГЛТ-редуктазы. 5. Для работы НАДФН-оксидазной системы клеток крови; 6. У новорожденных и детей первых лет жизни высока активность пентозного пути окисления глюкозы, т.к. этот процесс является поставщиком НАДФН2, используемого для восстановительного синтеза (образования СЖК), имеющего большое значение для детского организма
-
Пентозы, являющиеся промежуточными продуктами пентозного цикла, могут быть использованы для образования НК, Коf, НЗТ, ГАГов.
-
ПФЦ – это путь перехода избытка пентоз в глюкозу, а затем в гликоген
Сходство и различие между гликолизом и пентозным циклом.
Сходство заключается в том, что оба процесса протекают в цитоплазме в анаэробных условиях и начинаются с фосфорилирования глюкозы; некоторые промежуточные продукты одинаковы – фруктозо-6-фосфат и ФГА.
Различия – пишут в колонки
Гликолиз
-
образуется АТФ, которая является универсальным источником энергии для многих процессов, в том числе для биосинтеза белков и т.п.
-
глюкоза распадается до фосфотриоз, полный распад требует кислорода и протекает в митохондриях.
-
Промежуточными продуктами гликолиза являются фосфотриозы, которые могут быть использованы для образования липидов или окисляются до ПВК, которая, подвергаясь окислительному декарбоксилированию, дает АУК или используется на глюконеогенез.
-
Гликолиз протекает преимущественно в мышцах
Пентозный цикл
-
образуются НАДФН2 – источники энергии для синтеза СЖК, ХСН и КС
-
в анаэробных условиях глюкоза полностью распадается до СО2 в цитоплазме.
-
Промежуточными продуктами цикла являются пентозы, которые используются на синтез НК, НТФ, Коf
-
ПФЦ протекает в эритроцитах и лейкоцитах, жировой и нервной тканях, грудной и щитовидной железе, в печени и у плода.
Выделение конечных продуктов обмена углеводов
Конечными продуктами обмена углеводов являются Н2О и СО2. СО2 может быть использован в реакциях карбоксилирования, например, при биосинтезе СЖК. Основная масса СО2 выделяется через легкие. Н2О образуется преимущественно при БО и ОФ и используется для гидролиза, остальная часть воды выделяется через почки, потовые железы, выдыхается с воздухом, незначительное количество выделяется через толстый кишечник.
Литература – основная и дополнительная (список общий для всей темы)
-
Березов Т.Т., Коровкин Б.Ф. «Биологическая химия», 1998 – С. 169-186, 319-359.
-
Полосухина Т.Я., Аблаев Н.Р. «Материалы к курсу биологической химии», 1977 – С.30-44.
-
Плешкова С.М., Абитаева С.А., Ерджанова С.С., Петрова Г.И. «Практикум по биологической химии», 2003 – лаб.раб.№№ 66, 67, 74.
-
Сеитов З.С. «Биохимия», 2000 – С. 480-506, 517-522.
-
Зайчик А.Ш., Чурилов Л.П. «Основы патохимии»2000 – С.218-245
-
Harper’s Biochemistry – R.K. Murray, D.K. Granner, P.A. Mayes, V.W. Rodwell - APPLETON&LANGE, Stamford, Connecticut, 2000
-
Биохимия человека – Р. Марри, Д. Греннер, П. Мейес, В. Родуэлл – М., Мир, 1993
-
Шарманов Т.Ш., Плешкова С.М. – Метаболические основы питания с курсом общей биохимии - Алматы, 1998
-
Бышевский А.Ш., Терсенов О.А. «Биохимия для врача» 1994 – С.308-312, 222-224, 227, 75-95
Поделитесь с Вашими друзьями: |