Методические рекомендации. Гематологические анализаторы. Интерпретация анализа крови животных. Ставрополь 2015 Список сокращений



Скачать 463.82 Kb.
страница1/7
Дата29.09.2017
Размер463.82 Kb.
ТипМетодические рекомендации
  1   2   3   4   5   6   7

Министерство сельского хозяйства Российской Федерации

ВПО ФГБОУ «Ставропольский государственный аграрный университет»



Методические рекомендации. Гематологические анализаторы. Интерпретация анализа крови животных.

Ставрополь 2015



Список сокращений


АА

Апластическая анемия

АИГА

Аутоиммунная гемолитическая анемия

АХЗ

Анемия хронических заболеваний

ЖДА

Железодефицитная анемия

НТЖ

Насыщение трансферрина железом

ОЖСС

Общая железосвязывающая способность сыворотки

ОПГА

Острая постгеморрагическая анемия

ХПН

Хроническая почечная недостаточность

ЭПО

Эритропоэтин

эЭПО

Эндогенный эритропоэтин

рЭПО

Рекомбинантный эритропоэтин

CHr

Содержание Hb в ретикулоцитах

CRC

Скорректированный подсчет ретикулоцитов

FSC

Прямое светорассеяние

HGB

Концентрация гемоглобина в крови

HFR

Ретикулоциты с высокой флюоресценцией

HLR%

Процент незрелых ретикулоцитов

HLR#

Абсолютное количество незрелых ретикулоцитов

Ht, НСТ

Гематокрит

% Hypo

Процент гипохромных эритроцитов

IRF

Фракция незрелых ретикулоцитов

LFR

Ретикулоциты с низкой флюоресценцией

MCV

Средний объем эритроцитов

MCVr (MRV)

Среднее содержание гемоглобина в эритроцитах

MCH

Средний объем ретикулоцитов

MCHC

Средняя концентрация гемоглобина в эритроцитах

MFR

Ретикулоциты со средней флюоресценцией

MSRV (MSCV)

Средний объем сферических ретикулоцитов

PLT

Количество тромбоцитов (10 /л)

SFL

Канал специфического флюоресцентного сигнала

SSC

Боковое светорассеяние

sTfR

Растворимые рецепторы к трансферрину

RBC

Количество эритроцитов (10 /л)

RDW-CV

Показатель анизоцитоза эритроцитов

Ret

Ретикулоциты

RET#

Количество ретикулоцитов (10 /л)

Ret-He

Содержание Hb в ретикулоцитах

RET%

Количество ретикулоцитов (%)

RPI

Индекс продукции ретикулоцитов

WBC

Количество лейкоцитов (10 /л)


Введение
В эру использования современных технологий автоматизированного анализа крови животных стало реальным предоставлять значительно больше клинической информации о состоянии кроветворной системы и реагировании ее на различные внешние и внутренние факторы. Анализ результатов исследования крови составляет неотъемлемое звено в диагностическом процессе и последующем мониторинге на фоне проводимой терапии.

Высокотехнологические гематологические анализаторы способны измерять более 32 параметров крови животных, осуществлять полный дифференцированный подсчет лейкоцитов по 5-ти основным популяциям: нейтрофилы, эозинофилы, базофилы, моноциты и лимфоциты, что делает возможным в случае отсутствия от референсных значений этих показателей не проводить ручной подсчет лейкоцитарной формулы.

Аналитические возможности гематологических анализаторов:

- высокая производительность (до 100 - 120 проб в час)

- небольшой объем крови для анализа (12 - 150 мкл)

- анализ большого количества (десятки тысяч) клеток

- высокая точность и воспроизводимость

- оценка 18 - 30 и более параметров одновременно

- графическое представление результатов исследований в виде гистограмм, скатерограмм.

Гематологические анализаторы имеют систему обозначения - флаги или "сигналы тревоги" - указывающую на отклонение параметров от установленных границ. Они могут касаться как увеличения или уменьшения количества тех или иных клеток, так и изменения их функционального состояния, которое отражается на характеристиках измеряемых прибором клеток. Во всех этих случаях необходим строгий визуальный контроль окрашенных препаратов с соответствующими комментариями.

Диагностические возможности гематологических анализаторов:

- оценка состояния гемопоэза

- диагностика и дифференциальная диагностика анемий

- диагностика воспалительных заболеваний

- оценка эффективности проводимой терапии

- мониторинг за мобилизацией стволовых клеток из костного мозга.

Несмотря на все достоинства, даже самые современные гематологические анализаторы обладают некоторыми ограничениями, которые касаются точной морфологической оценки патологических клеток (например, при лейкозах), и не в состоянии полностью заменить световую микроскопию.

Преаналитический этап гематологических исследований
Контроль преаналитических факторов в гематологических исследованиях является ключевым для обеспечения качественных результатов тестов. Отклонения от стандартов при взятии пробы, транспортировке и хранении образца, интерферирующие вещества, а также факторы, связанные с пациентом, могут привести к неверным или неточным результатам анализов и, следовательно, к постановке ошибочного диагноза. До 70% лабораторных ошибок связаны именно с преаналитическим этапом исследования крови животных. За счет снижения числа ошибок на любом этапе преаналитической подготовки можно существенно улучшить качество гематологических анализов, снизить количество повторных проб, сократить расходы рабочего времени и средств на обследование животных.

Снижение до минимума возможных ошибок и обеспечение высокого качества гематологических исследований возможно за счет стандартизации преаналитического и аналитического этапов работы.


Взятие крови
На точность и правильность результатов оказывает влияние техника взятия крови животных, используемые при этом инструменты (иглы, скарификаторы и др.), а также пробирки, в которые берется, а в последующем хранится и транспортируется кровь.

- Кровь для клинического анализа берут у пациента из вены.

- Кровь следует брать после 12 часового голодания, между 7 и 9 часами утра, при минимальной физической активности непосредственно перед взятием (в течение 20 - 30 мин.), в положении пациента лежа или сидя.

- Взятие материала следует проводить в резиновых перчатках, соблюдая правила асептики.

 В организме различает артериальную, венозную и капиллярную кровь, которая имеет незначительные цитологические и биохимические отличия. Для морфологических исследований пользуются почти исключительно капиллярной кровью, а при биохимических – венозной.
Венозная кровь.

Венозная кровь считается лучшим материалом для клинического исследования крови. При известной стандартизации процессов взятия, хранения, транспортировки венозной крови удается добиться минимальной травматизации и активации клеток, примеси тканевой жидкости, при этом всегда имеется возможность повторить и/или расширить анализ, например, добавив исследование ретикулоцитов.

Достоверность и точность гематологических исследований, проводимых из венозной крови, во многом определяется техникой взятия крови.

Подготовка пациента к взятию крови из вены включает несколько этапов. Место венепункции нужно продезинфицировать марлевой салфеткой или специальной безворсовой салфеткой, смоченной 70° спиртом, и подождать до полного высыхания антисептика (30 - 60 секунд). Применение ватных тампонов и других волокнистых материалов подобного рода может привести к засорению волокнами счетной и гемоглобиновой камер, что влечет снижение точности и воспроизводимости измерения. Не рекомендуется использовать 96° спирт, так как он дубит кожу, поры кожи закрываются, и стерилизация может быть неполной.

Для получения большого количества крови у лошадей, крупного и мелкого рогатого скота, верблюдов делают венепункцию (прокол яремной вены). У птиц кровь берут из под кольцевых сосудов или из сердца. У свиней кровь получают из крупных сосудов ушной раковины или из сосудов хвоста, путем отсечения его кончика.

При венепункции прокол окружающих вену тканей и стенки вен делают в один прием. Иглы для взятия крови должны быть с коротким срезом и достаточно большим диаметром, чтобы не травмировать противоположную стенку вены и не вызвать повреждения эритроцитов.

При взятии крови из яремной вены иглу вкалывают на границе перехода верхней трети шеи в среднюю. Чтобы вызвать достаточное наполнение вены и уменьшать ее подвижность, вену сдавливает в середине шеи резиновым жгутом или пальцем. При проколе вены необходимо держать иглу в руке так, чтобы направление ее совпало с линией хода вены и чтобы срез иглы был направлен вверх, к голове. Иглу вкалывают под острым углом - в 20-30°. При попадании в вену из иглы вытекает кровь.

Кровь должна стекать по стенке пробирки по избежании разрушения эритроцитов и при необходимости немедленно смешиваться с достаточным количеством антикоагулянта.



Перед извлечением иглы из вены резиновый жгут снимают, пережимают вену пальцем выше места вкола, иглу извлекают, а место вкола некоторое время сдавливают тампоном для предотвращения образования гематомы. 

В зависимости от задач исследования анализу подвергают цельную кровь, плазму или сыворотку.

В цельной крови определяют морфологические показатели, а также содержание глюкозы, кетоновых тел, меди, цинка, кобальта, марганца, селена и др., т.е. веществ, равномерно распределенных между плазмой и эритроцитами. Для исследования веществ, неравномерно распределенных между клетками и жидкой частью крови, следует использовать сыворотку или плазму. В сыворотке, например, исследуют общий белок и его фракции, остаточный азот, мочевину, свободные аминокислоты, липиды, холестерин, билирубин, кальций, неорганический фосфор, магний, йод, связанный с белком (СБЙ), каротин, витамины, ферменты и др. В плазме - резервную щелочность, содержание натрия, калия, неорганического фосфора, магния, каротина, витаминов А,С и др.

Для получения пробы цельной крови или плазмы ее стабилизируют, т.е. в пробирку вносят противосвертывающее вещество - антикоагулянт.

Кровь для гематологических исследований должна поступать свободным током непосредственно в пробирку, содержащую антикоагулянт К ЭДТА. Взятие крови шприцом без антикоагулянта с последующим переливанием в пробирку нежелательно из-за формирования микросгустков и гемолиза. При взятии капиллярной крови необходимо использовать специальные пробирки с ЭДТА для капиллярной крови.

Рационально применение пробирок для взятия венозной крови небольшого объема (4 - 5 мл) диаметром 13 и высотой пробирки 75 мм. Взятие венозной крови облегчается применением закрытых вакуумных систем. Под влиянием вакуума кровь из вены быстро поступает в пробирку, что упрощает процедуру взятия и сокращает время наложения жгута.

Вакуумная система состоит из трех основных элементов, соединяющихся между собой в процессе взятия крови: стерильной одноразовой пробирки с крышкой и дозированным содержанием вакуума, стерильной одноразовой двусторонней иглы, закрытой с обеих сторон защитными колпачками, и одно- или многоразового иглодержателя. Пробирки, входящие в закрытую вакуумную систему, содержат различные добавки и антикоагулянты, в том числе для проведения гематологических исследований. Метод взятия крови с помощью закрытых вакуумных систем имеет ряд преимуществ, основными из которых являются обеспечение высокого качества пробы и предотвращение любого контакта с кровью животного, а значит, обеспечение безопасности медицинского персонала и других животных за счет существенного снижения риска заражения гемоконтактными инфекциями.

ЭДТА (К ЭДТА) - предпочтительный антикоагулянт при подсчете форменных элементов крови с использованием автоматических гематологических анализаторов. Использование Na ЭДТА не рекомендуется вследствие его плохой растворимости в крови животных. При использовании рекомендованных концентраций K EDTA и при проведении анализа на гематологических анализаторах в пределах от 1 до 4 ч после взятия крови существенных различий результатов между образцами, взятыми с этими двумя антикоагулянтами, не зафиксировано. Не следует использовать пробирки с выпаренным раствором ЭДТА, приготовленные в условиях лаборатории. При испарении на дне пробирки образуются крупные кристаллы ЭДТА, которые очень медленно растворяются в крови. Это может приводить к образованию фибриновых нитей в верхней части пробы крови. Многие компании выпускают пробирки с сухим напылением ЭДТА (особенно для капиллярной крови). Особенности технологии приготовления этих пробирок приводят к равномерному распределению ЭДТА по стенкам.

У некоторых животных может наблюдаться небольшая спонтанная агрегация тромбоцитов или реже так называемая ЭДТА-зависимая псевдотромбоцитопения (иммунного характера), причем эти явления прогрессируют по мере увеличения времени, прошедшего после взятия крови. У таких животных точный подсчет числа эритроцитов может быть осуществлен при взятии крови с цитратом в качестве антикоагулянта.

Следует помнить, что применение в качестве антикоагулянтов гепарина или цитрата натрия сопровождается структурными изменениями клеток и поэтому не рекомендуется для использования как при автоматизированном, так и морфологическом исследовании крови.

Цитрат натрия в основном используется для определения скорости оседания эритроцитов (СОЭ) по методу Вестергрена или Панченкова. Для этого венозная кровь набирается в пробирки с 3,8% цитратом натрия в соотношении 4:1. С этой же целью может использоваться венозная кровь, взятая с ЭДТА (1,5 мг/мл) и затем разведенная цитратом натрия в соотношении 4:1. Сразу после заполнения пробирки кровью до указанного на ней объема пробу следует осторожно перемешать плавным переворачиванием и вращением пробирки в течение не менее 2 минут (пробирку с ЭДТА 8 - 10 раз, пробирку с цитратом натрия для определения СОЭ - также 8 - 10 раз). Пробирки нельзя встряхивать - это может вызвать пенообразование и гемолиз, а также привести к механическому лизису эритроцитов.

Для кратковременного хранения и перемешивания проб крови существуют различные приспособления. Одним из наиболее удобных приспособлений является Ротамикс RM-1 фирмы ELMI (Латвия), который позволяет подобрать наиболее оптимальный режим перемешивания проб крови.


Капиллярная кровь.

Капиллярную кровь берут из внутренней поверхности ушной раковины. У птиц - из гребня, сережек, мякоти ступни.

Для гематологических исследований капиллярную кровь рекомендуется брать в следующих случаях:

- при ожогах, занимающих большую площадь поверхности тела животного;

- при выраженном ожирении животного;

- при установленной склонности к венозному тромбозу;

- у птиц;

- у новорожденных животных.

Для взятия пробы капиллярной крови используют стерильные скарификаторы-копья одноразового применения (например, BD Genie фирмы "Becton Dickinson", фирмы "Гем", ЗАО Медикон ЛТД и др.) или лазерные перфораторы. Между объемом получаемой крови и глубиной прокола имеется прямая зависимость. В связи с этим скарификатор должен выбираться в зависимости от места прокола и количества крови, необходимого для выполнения различных исследований. С этой целью фирма BD выпускает скарификаторы BD Genie с лезвиями разных размеров.

Шерсть или перо на месте взятия крови выстригают, очищают место укола ватным тампоном, смоченным смоченным 70°спиртом. Место пункции необходимо просушить естественным способом для удаления остатков спирта, поскольку он может вызвать гемолиз.Укол делают на глубину до 2 мм. Первую каплю крови стирают, т.к. она содержит случайные примеси и лимфу, а последующие берут для исследования. Очень важно, чтобы кровь вытекала из ранки без надавливания на ткани, иначе она смешивается с лимфой и изменяет свой клеточный и биохимический состав. Истечение крови можно ускорить, если предварительно прогревать место укола в теплой воде или источником сухого тепла (фен, электролампа).

Применение ватных тампонов и других волокнистых материалов не рекомендовано, поскольку это приводит к засорению волокнами счетных и гемоглобиновой камер. В результате точность и воспроизводимость измерения падает.

После прокола капиллярная кровь помещается в специальный микрокапилляр или специальные пластиковые пробирки одноразового пользования, обработанные антикоагулянтом К ЭДТА (фирмы "Deltalab", "Sarstedt" , BD Microtainer (R) и др.

При прикосновении края пробирки к месту пункции капли крови начинают стекать в нее под действием капиллярного эффекта. После завершения сбора крови пробирку следует плотно закрыть. Необходимым условием для обеспечения качественной пробы является ее обязательное немедленное перемешивание с антикоагулянтом осторожным переворачиванием пробирки до 10 раз. В случае последовательного взятия капиллярной крови в несколько микропробирок необходимо соблюдать определенный порядок их заполнения. Последовательность взятия крови такова: в первую очередь заполняются пробирки с ЭДТА, затем с другими реактивами и в последнюю очередь заполняются пробирки для исследования сыворотки крови.

Основные рекомендации при работе с капиллярной кровью:

- При взятии крови в пробирку с антикоагулянтом не допускается стекание крови по коже или волосяного покрова, стенке пробирки и любой другой поверхности, так как мгновенно происходит контактная активация прогресса свертывания.

- Кровь самотеком из прокола должна попадать прямо в антикоагулянт, перемешиваясь с ним.

- Нельзя выдавливать кровь во избежание спонтанной агрегации тромбоцитов и попадания в пробу большого количества межтканевой жидкости (тканевого тромбопластина).

Следует отметить, что при взятии капиллярной крови возможен ряд особенностей, которые бывает весьма трудно стандартизировать:

- методические - малый объем исследуемой крови и в связи с этим необходимость разведения образца для анализа на гематологическом анализаторе и др.

Все это приводит к значительным разбросам в получаемых результатах и, как следствие, к необходимости повторных исследований для уточнения результата.




Доставка, хранение и подготовка проб к исследованию
Для обеспечения качественного результата исследований нужно четко контролировать время и условия хранения проб до выполнения анализа.

- Автоматизированное исследование крови необходимо проводить в промежутке 0 - 5 мин. или через 1 час и позже после взятия крови. В промежутке 5 мин. - 1 час происходит временная агрегация тромбоцитов, что может привести к их ложному снижению в пробе крови.

- Непосредственно после взятия крови исключается возможность спонтанной агрегации тромбоцитов, примерно 25 мин. необходимо для адаптации тромбоцитов к антикоагулянту. При анализе, проведенном позже чем через 6 - 8 часов после взятия образца, уменьшается достоверность результатов. Более продолжительное хранение крови не рекомендуется, т.к. изменяются некоторые характеристики клеток (сопротивляемость клеточной мембраны), снижается объем лейкоцитов, повышается объем эритроцитов, что в конечном итоге приводит к ошибочным результатам измерения и неправильной интерпретации результатов. Только концентрация гемоглобина и количество тромбоцитов остаются стабильными в течение суток хранения крови.

- Кровь нельзя замораживать. Капиллярную кровь с ЭДТА следует хранить при комнатной температуре и анализировать в течение 4 часов после взятия.

- При необходимости проведения отсроченного анализа (транспортировка на отдаленные расстояния, техническая неполадка прибора и т.д.) пробы крови хранят в холодильнике (4° - 8 °С) и исследуют в течение 24 часов. Однако при этом следует учитывать, что происходит набухание клеток и изменение параметров, связанных с их объемом. У практически здоровых животных эти изменения не носят критического характера и не сказываются на количественных параметрах, но при наличии патологических клеток последние могут изменяться или даже разрушаться в течение нескольких часов с момента взятия крови.

- Непосредственно перед исследованием кровь должна быть тщательно перемешана в течение нескольких минут для разведения антикоагулянта и равномерного распределения форменных элементов в плазме. Длительное постоянное перемешивание образцов на ротомиксе до момента их исследований не рекомендуется вследствие возможного травмирования и распада патологических клеток.

- Исследование крови на приборе проводится при комнатной температуре. Кровь, хранившуюся в холодильнике, необходимо вначале согреть до комнатной температуры, так как при низкой температуре увеличивается вязкость, а форменные элементы имеют тенденцию к склеиванию, что, в свою очередь, приводит к нарушению перемешивания и неполному лизису. Исследование холодной крови может быть причиной появления "сигналов тревоги" вследствие компрессии лейкоцитарной гистограммы.

- Приготовление мазков крови рекомендуется делать не позднее 1 - 2 часов после взятия крови.

При выполнении гематологических исследований на значительном удалении от места взятия крови неизбежно возникают проблемы, связанные с неблагоприятными условиями транспортировки. Тряска, вибрация, постоянное перемешивание, нарушения температурного режима, возможные проливы и загрязнения проб могут оказывать существенное влияние на качество анализов. Для устранения этих причин при перевозках пробирок с кровью рекомендуется использовать герметично закрытые пластиковые пробирки (BD Vacutainer (R) производства компании "Becton Dickinson", Deltalab, Sarstedt) и специальные транспортные изотермические контейнеры (фирма "Гем").
Влияние преаналитических факторов, зависящих от животных
На результаты гематологических исследований могут влиять факторы, связанные с индивидуальными особенностями и физиологическим состоянием организма животного. Изменения клеточного состава периферической крови наблюдаются не только при различных заболеваниях, они также зависят от возраста, пола, беременности, физической нагрузки, стресса и сезонных ритмов; климатических и метеорологических условий; положения животного в момент взятия крови; приема фармакологических препаратов и др. С увеличением высоты над уровнем моря значительное повышение наблюдается для гематокрита и гемоглобина (до 8% на высоте 1400 м). Физические нагрузки могут приводить к существенным изменениям числа лейкоцитов, обусловленным гормональными сдвигами. У больных при переходе из положения лежа в положение стоя показатели гемоглобина и число лейкоцитов могут увеличиваться на 6 - 8%, а показатели гематокрита и число эритроцитов возрастать на 15 - 18%. Этот эффект обусловлен переходом жидкости из сосудистого русла в ткани в результате повышения гидростатического давления. Выраженная диарея и рвота могут приводить к значительной дегидратации и гемоконцентрации. После регидратации наблюдается снижение гемоглобина и гематокрита, что может быть ошибочно принято за кровопотерю.

Для устранения или сведения к минимуму влияния этих факторов кровь для повторных анализов необходимо брать в тех же условиях, что при первом исследовании.



Автоматизированное исследование клеток крови животных
Автоматические счетчики крови оценивают размеры, структурные, цитохимические и другие характеристики клеток. Они анализируют около 10000 клеток в одном образце и имеют несколько различных каналов подсчета клеточных популяций и концентрации гемоглобина. На основании количества определяемых параметров и степени сложности их можно условно разделить на 3 основных класса:

I класс - автоматические гематологические анализаторы, определяющие до 20 параметров, включая расчетные показатели красной крови и тромбоцитов, гистограммы распределения лейкоцитов, эритроцитов и тромбоцитов по объему, а так же частичную дифференцировку лейкоцитов на три популяции - лимфоциты, моноциты и гранулоциты.

II класс - высокотехнологичные гематологические анализаторы, позволяющие проводить развернутый анализ крови, в том числе полную дифференцировку лейкоцитов по 5-ти параметрам (нейтрофилы, эозинофилы, базофилы, моноциты и лимфоциты), гистограммы распределения лейкоцитов, эритроцитов и тромбоцитов по объему.

III класс - сложные аналитические системы, выполняющие не только развернутый анализ крови с дифференцировкой лейкоцитов по 5 параметрам, но и подсчет и анализ ретикулоцитов, некоторых субпопуляций лимфоцитов; при необходимости комплектуются блоком для автоматического приготовления и окраски мазков из заданных образцов крови.

В основе работы анализаторов I-го класса лежит кондуктометрический метод. Анализаторы II и III-го классов используют в своей работе комбинации разных методов.






Кондуктометрические гематологические анализаторы

Технология автоматического подсчета клеток была разработана в 1947 г. Wallace Н. и Joseph R. Coulter. Апертуро-импедансный метод (метод Культера или кондуктометрический метод) основан на подсчете числа и определении характера импульсов, возникающих при прохождении клеток через отверстие малого диаметра (апертуру), по обе стороны которого расположены два изолированных друг от друга электрода. Если через узкий канал, заполненный электропроводящим раствором, проходит клетка крови, то в этот момент сопротивление электрическому току в канале возрастает. Несмотря на то, что изменение сопротивления невелико, современные электронные приборы легко его улавливают. Каждое событие - прохождение клетки через канал, сопровождается появлением электрического импульса. Чтобы определить концентрацию клеток, достаточно пропустить определенный объем пробы через канал и подсчитать число электрических импульсов, которые при этом генерируются.

Если в один и тот же момент в канале находятся две клетки, они регистрируются в виде одного импульса, что приведет к ошибке подсчета клеток. Во избежание этого, проба крови разводится до такой концентрации, при которой в канале датчика всегда будет не больше одной клетки.

Апертуро-импедансный метод позволяет определять большинство эритроцитарных и тромбоцитарных показателей, связанных с объемом клеток (НСТ, MCV, МСН, МСНС, MPV), а также является основой для дифференцировки лейкоцитов по трем параметрам.



Подсчет эритроцитов и тромбоцитов, расчет величины гематокрита, эритроцитарных и тромбоцитарных индексов
Разделение эритроцитов и тромбоцитов в современных анализаторах проводится по измерению амплитуды электрического сигнала: тромбоциты (небольшие по размеру клетки) при прохождении измерительного канала генерируют электрические импульсы низкой амплитуды, а сравнительно большие клетки - эритроциты и лейкоциты - импульсы высокой амплитуды. После лизиса эритроцитов в суспензии остаются лейкоциты. Из первого счета импульсов высокой амплитуды вычитают импульсы высокой амплитуды второго счета (лейкоциты). Разница импульсов высокой амплитуды до и после лизиса соответствует количеству эритроцитов - RBC (Red Blood Cells).

Устройство, которое разделяет импульсы по величине амплитуды, называется дискриминатор. В современных анализаторах применяются многоканальные дискриминаторы, позволяющие получить детальную информацию о размерах клеток в виде гистограмм, поскольку каждый канал соответствует определенному объему клеток.

При суммировании амплитуд импульсов, получаемых при подсчете количества эритроцитов, получается величина, отражающая общий объем, занимаемый эритроцитами, то есть гематокрит Hct (hematocrit). Разделив гематокритную величину на концентрацию эритроцитов (RBC), получается полезная характеристика эритроцитов - средний объем MCV (mean corpuscular volume).

Очевидно, что аналогичные показатели можно получить и для тромбоцитов: концентрация тромбоцитов - PLT (platelet), тромбокрит - РСТ (platelet crit), средний объем тромбоцитов - MPV (mean platelet volume).

Поскольку в норме концентрация эритроцитов в крови на 3 порядка превышает концентрацию лейкоцитов, то вклад лейкоцитов в общее количество подсчитываемых клеток пренебрежимо мал по сравнению с эритроцитами, поэтому в некоторых анализаторах за количество эритроцитов принимают общее подсчитанное количество клеток. Такое допущение справедливо, за исключением случаев явных лейкоцитозов.
Подсчет и дифференцировка лейкоцитов
Определение количества лейкоцитов возможно только после лизиса эритроцитов. Эта задача оказалась легко решаемой, так как свойства мембран эритроцитов и лейкоцитов существенно различаются. Эритроциты легко лизируются под воздействием многих поверхностно-активных веществ, при этом лейкоциты, хотя и претерпевают некоторые изменения, остаются целыми. Поэтому при подсчете лейкоцитов, прежде чем пропустить разведенную суспензию крови через апертуру датчика, к ней добавляют лизирующий раствор или гемолитик, эритроциты разрушаются до очень мелких фрагментов, которые при подсчете лейкоцитов генерируют электрические импульсы очень низкой амплитуды, не влияющие на результат анализа.

Разделение неизмененных лейкоцитов кондуктометрическим методом на основные субпопуляции невозможно в виду близости их объемов, однако можно подобрать такую композицию растворителя и гемолитика, что различные формы лейкоцитов претерпевают изменения размеров в разной степени и, благодаря этому, могут разделяться данным методом. Изменение объема клетки зависит от многих факторов, включающих величину и форму ядра, объем цитоплазмы, наличие внутриклеточных включений и т.д., поэтому размер трансформированных клеток не соответствует размерам клеток при визуальном просмотре их в окрашенном мазке крови (таблица 1)


Таблица 1



Соотношение размеров клеток в окрашенных мазках крови и в приборах после обработки их лизирующим реагентом

Тип клеток

Размер клеток при визуальном анализе мазков крови

Размер клеток после обработки лизатом

Лимфоциты

малый

малый

Базофилы

средний

средний, малый

Эозинофилы

средний

средний, большой

Моноциты

наибольший

средний

Нейтрофилы

средний

большой, средний

Патологические формы клеток

различный

различный <*>

<*> Дальнейшая идентификация патологических форм клеток проводится визуально

Полученные после анализа лейкоциты распределяются на гистограмме следующим образом:

- Область малых объемов (35 - 90 фл) формируется лимфоцитами, которые под действием гемолитика значительно уменьшаются в объеме.

- Гранулоциты (нейтрофилы, базофилы и эозинофилы), напротив, подвергаются небольшому сжатию и расположены в области больших объемов (120 - 400 фл).

- Между двумя пиками имеется зона так называемых "средних лейкоцитов" (90 - 120 фл), которая лучше всего коррелирует с моноцитами (по этой причине в некоторых анализаторах клетки в этой области указываются как моноциты). Однако, учитывая тот факт, что коэффициент корреляции с моноцитами R = 0,5 - 0,8 сравнительно невысок, более корректным является название параметра "средние лейкоциты" или "средние клетки" (MID). Практически в область средних клеток могут частично попадать базофилы, эозинофилы, различные патологические формы.
Высокотехнологические гематологические анализаторы
Высокотехнологические гематологические анализаторы способны осуществлять дифференцированный счет лейкоцитов по 5-ти (5Diff) основным популяциям, используя различные принципы дифференцирования клеток: нейтрофилы, эозинофилы, базофилы, моноциты и лимфоциты, оценивать наличие незрелых гранулоцитов, анализировать ретикулоциты и их субпопуляции, проводить оценку стволовых гемопоэтических клеток и субпопуляций лимфоцитов. Многочисленные функции современных гематологических анализаторов стали возможны, благодаря развитию новых технологий, которые отличаются у разных фирм-производителей.

Проточная цитохимическая техника включает регистрацию рассеянного и поглощенного светового луча. В лейкоцитарном канале после лизиса эритроцитов и стабилизации лейкоцитов происходит цитохимическая реакция, далее лейкоциты дифференцируются по двум признакам: размеру клеток, определяемому методом рассеивания лазерного луча, и пероксидазной активности - по поглощению клеткой светового потока (рис. 18 - не приводится). Дифференцировка базофилов от других гранулоцитов проводится в базоканале. Цитоплазма всех лейкоцитов за исключением базофилов подвергается лизису после обработки пробы специфическим лизатом. Затем в канале осуществляется измерение дисперсии лазерного света под углами 2° - 3° и 5° - 15°, что позволяет различить клетки в зависимости от формы ядер.

Сравнивая информацию, получаемую с Perox- и Baso-каналов, компьютер осуществляет дифференцировку лейкоцитов на 5 основных популяций, а также сигнализирует в виде флагов о присутствии в крови активированных лимфоцитов, незрелых гранулоцитов, бластов, эритробластов.

В гематологических анализаторах серии XT и ХЕ фирмы Sysmex применяется метод проточной цитофлюориметрии с использованием флюоресцентного красителя полиметина. Этот флюоресцентный краситель связывается с ДНК и РНК неизмененных клеток, что позволяет использовать его как для дифференцировки лейкоцитов по 5-ти параметрам (нейтрофилы, эозинофилы, базофилы, моноциты и лимфоциты), так и для подсчета ретикулоцитов.

Анализ клеток происходит в проточной кювете при пересечении луча лазера длиной 633 нм. После контакта лазерного луча с окрашенной клеткой происходит рассеивание последнего под большим и малым углами и возбуждение флюоресцентного красителя. Данные сигналы улавливаются фотоумножителями и регистрируются в виде трех параметров:

1. Светорассеивание под малым углом (FSC) - отклонение лазерного луча под малым (до 10°) углом, которое зависит от размера (объема, только при условии сферической формы частицы) и формы клетки;

2. Боковое светорассеивание (SSC) - рассеивание под углом до 90° зависит от рефрактерного индекса (или плотности) клетки и характеризует сложность внутриклеточных структур;

3. Детекция специфического флюоресцентного сигнала (SFL), которая регистрируется также как боковое светорассеивание под углом 90° и позволяет судить о содержании РНК/ДНК в клетках.

На основании полученных сигналов все клетки распределяются по соответствующим кластерам (зонам) в соответствии с их размером, структурой и количеством ДНК. Таким образом, происходит дифференцировка лейкоцитов на 4 популяции: лимфоциты, моноциты, эозинофилы и нейтрофилы вместе с базофилами.

Разделение нейтрофилов и базофилов происходит в базоканале, где используется метод специфического химического лизиса, основанный на предварительной обработке лейкоцитов реактивом, осуществляющим лизис всех клеток, за исключением базофилов, с последующим дискриминантным анализом всех элементов по размеру и сложности структуры и количеству ДНК.

Кроме того, приборы оборудованы каналом для выделения незрелых гранулоцитов и атипичных лимфоцитов.

Таким образом, использование приборов с полным дифференцированным подсчетом лейкоцитов (5Diff) позволяет повысить точность дифференциального подсчета лейкоцитов, провести скрининг нормы и патологии, динамический контроль за лейкоцитарной формулой и резко сократить ручной подсчет лейкоцитарной формулы, оставляя примерно до 15 - 20% образцов крови для световой микроскопии.


Определение гемоглобина
В классическом гемиглобинцианидном методе (метод Драбкина) Fe+2 гемоглобина окисляется до Fe +3 метгемоглобина феррицианидом, затем метгемоглобин переводится в стабильный цианметгемоглобин цианидом. Оптическая плотность CNmetHb измеряется при 540 нм, при которой имеется максимум поглощения. Гемиглобинцианидный метод рекомендован Международным комитетом по стандартизации в гематологии Всемирной Организации Здравоохранения и используется в мировой практике более 30 лет.

В гематологических анализаторах к методам определения гемоглобина предъявляется ряд специфических требований. Во-первых, время реакции должно быть в десятки раз меньше для обеспечения высокой производительности анализаторов. Во-вторых, для оптимизации конструкции анализаторов гемоглобин должен измеряться в том же гемолизате, который используется для подсчета лейкоцитов, и, следовательно, компоненты, обеспечивающие гемоглобиновую реакцию, не должны негативно влиять на подсчет лейкоцитов.

Многие гематологические анализаторы измеряют концентрацию гемоглобина модифицированным гемиглобинцианидным методом. Высокая скорость реакции достигается путем быстрого лизиса эритроцитов денатурирования и окисления гемоглобина до Fe +3 с помощью поверхностно-активных веществ. Последующая реакция с цианидом формирует устойчивую форму со спектром поглощения, похожим на спектр гемиглобинцианида в методе Драбкина, и максимумом поглощения около 545 нм. Достоинством метода является его простота, высокая скорость реакции и стабильность конечного продукта. Применение циановых методов в гематологических автоанализаторах имеет два существенных недостатка, связанных с тем, что цианид из флаконов постепенно выпаривается в виде синильной кислоты. Во-первых, это может оказывать вредное воздействие на персонал при плохой вентиляции помещения. Во-вторых, это приводит к ухудшению реакции и изменению калибровки по гемоглобину через 2 - 3 месяца после подсоединения к прибору флакона с гемолитиком.

Учитывая недостатки модифицированных гемиглобинцианидных методов, в последние годы в большинстве новых моделей гематологических анализаторов используются бесциановые методы.

В других современных бесциановых методах используются компоненты гемихромной реакции, которые совместимы с подсчетом лейкоцитов и их дифференциацией на три популяции. Высокая скорость реакции достигается путем быстрого лизиса эритроцитов, денатурирования и окисления гемоглобина до Fe+3 с помощью окислителей в присутствии поверхностно-активных веществ. При этом в качестве лигандов атомов железа гема используются отличные от цианида вещества.

Оптимальной областью фотометрирования является максимум спектральной кривой поглощения. Для гемиглобинцианида - это 540 нм (рис. 27 - не приводится), которая и есть рабочая длина волны для этого метода. Измерение в максимуме кривой, где смягчаются требования к точности установки длины волны, снижает требования к точности изготовления и стабильности оптических фильтров. Максимум кривой поглощения гемихрома находится на длине волны 533 нм. Однако измерение на этой длине волны возможно только в спектрофотометрах. В фотометрических ячейках гематологических анализаторов, как правило, применяются полосовые светофильтры с типовыми длинами волн. Ближайшая к 533 нм типовая длина волны 540 нм, на которой и проводится фотометрирование с учетом коэффициента пересчета для 540 нм. При переходе с цианового на бесциановый метод, как правило, требуется корректировка калибровки гемоглобина в пределах 0 - 5%.

Качество результатов исследования крови на гематологическом анализаторе определяется следующими факторами:

- точностью дозирования цельной или разведенной крови;

- точностью дозирования изотонического раствора при проведении процедуры разведения крови;

- точностью определения объема суспензии, пропущенного через датчики подсчета клеток;

- точностью самого подсчета клеток;

- точностью определения размеров клеток;

- корректностью математических методов обработки первичных результатов измерений.

Во избежание случаев несовместимости реагентов следует использовать изотонический раствор и гемолитик от одного изготовителя. При смене реагентов одного производителя на реагенты другого производителя необходимо проверить калибровку анализатора по контрольной крови, обращая особое внимание на Hb и MCV/HCT, и при необходимости нужно делать перекалибровку этих показателей. Калибровка других показателей, как правило, не меняется.

При эксплуатации гематологических анализаторов важную роль играет качество электрической сети и заземления. Внезапное отключение электропитания приводит к сбоям в работе приборов и необходимости вмешательства инженеров сервисной службы. В том случае, если электрическое питание пропадает в момент забора пробы или анализа и появляется спустя несколько часов (5 - 20 ч), последствия могут оказаться значительно более серьезными - может выйти из строя гидравлика, засориться сгустками крови капиллярные трубки, апертура и т.д. Поэтому прибор должен работать с источником бесперебойного питания, который должен обеспечить возможность окончания анализа и промывку прибора, т.е. работу прибора в течение нескольких минут.

Периодически необходима калибровка по стандартным материалам, так как электронные и механические компоненты прибора, датчиков, насосов и т.д. со временем подвергаются старению и меняют свои технические параметры. Для осуществления калибровки необходимо пользоваться только качественными контрольными материалами!

Гематологические анализаторы очень чувствительны к длительным отключениям и перебоям в работе, что связано с подсыханием шлангов, проростом микрофлоры, кристаллизацией из растворов. При длительной остановке (на период отпуска, переезда или отсутствия реагентов) обязательным является заполнение шлангов консервирующими растворами с последующей многократной отмывкой от них.

Общее правило - не прерывать работу гематологического анализатора на длительный срок.


Автоматизированные гематологические анализаторы
Для оснащения клинико-диагностических лабораторий, предпочтение отдано автоматизированным гематологическим анализаторам, работа которых основана на кондуктометрическом методе, который позволяет получить до 18 параметров крови с определением трех популяций лейкоцитов (лимфоциты, клетки средних размеров, гранулоциты).

При использовании такого анализатора определяют:



Эритроцитарные параметры

- RBC (количество эритроцитов)

- HGB (концентрация гемоглобина)

- НСТ (гематокрит)

- MCV (средний объем эритроцита)

- МСН (среднее содержание гемоглобина в эритроците)

- МСНС (средняя концентрация гемоглобина в эритроците)

- RDW (ширина распределения эритроцитов по объему)


Тромбоцитарные параметры

- PLT (количество тромбоцитов)

- MPV (средний объем тромбоцита)

- РСТ (тромбокрит)

- PDW (ширина распределения тромбоцитов по объему)
Лейкоцитарные параметры

- WBC (количество лейкоцитов)

- GR (гранулоциты, % и # - относительное и абсолютное количество)

- LY (лимфоциты, % и # - относительное и абсолютное количество)

- МО (моноциты, % и # - относительное и абсолютное количество)
Гистограммы (распределение клеток по объему)

- Эритроцитарная

- Тромбоцитарная

- Лейкоцитарная.


Автоматизированный гематологический анализатор BC-2800 Vet, Mindray (Миндрей)


Ветеринарный гематологический анализатор BC-2800Vet (Mindray) является количественным счетчиком форменных элементов крови животных и предназначен для определения 18 параметров с дифференциацией лейкоцитов на 3 субпопуляции и построения гистограмм распределения.

Прибор подходит для исследования крови собак, кошек, лошадей, свиней, коров, коз, буйволов и т.д., а также имеется 4 свободных позиции для определения содержания форменных элементов крови других животных по вашему выбору.



https://www.zoomed.ru/upload/iblock/bd6/bd654a79589d80e1fdb0e832df915e66.jpg

Основные особенности автоматического гематологического анализатора ВС-2800Vet Mindray:

  • автоматическое разведение крови внутри прибора;

  • режимы работы с предилюцией(20 мкл) и с цельной кровью(13 мкл);

  • большой цветной ЖК-дисплей с выводом табличной и графической информации(гистограммы);

  • русифицированное меню;

  • встроенная система подсказок и тревог;

  • возможность ввода и вывода данных о пациенте;

  • наличие программы Контроля Качества;

  • построение графиков Леви-Дженингса;

  • возможность длительного хранения данных (до 10000 результатов с гистограммами);

  • встроенный термопринтер.

Количество измеряемых параметров

18

Степень дифференциации лейкоцитов

3-дифф. (для собак, кошек, мышей, крыс, кроликов,обезьян, лошадей)

Методы измерения

Импедансный метод (для подсчета клеток);

Бесцианидный фотометрический метод (для измерения гемоглобина).



Выполняемые измерения и расчеты

Эритроциты(RBC);Средний объем эритроцитов(MCV);

Гистограмма RBC;Средний объем эритроцитов(MCV);

Ширина распределения эритроцитов(RDW);

Лейкоциты(WBC);Гистограмма WBC;

Лимфоциты(Lymph);Гранулоциты(Gran);Моноциты(Mid);

Тромбоциты(PLT);Средний объем тромбоцитов(MPV);

Ширина распределения тромбоцитов(PDW);

Тромбокрит(PCT);Гематокрит(HCT);Гемоглобин(HGB);

Среднее содержание гемоглобина в эритроците(MCH);

Средняя концентрация гемоглобина в эритроцитах(MCHC);

Процент эозинофилов для кошек и собак (Eos%).


Программы измерений

13- встроенных (собаки, кошки, обезьяны, лошади, свиньи, коровы, буйволы, козы, овцы, кролики, крысы, мыши и т.д.);

3-свободных пользовательских.



Форма представления информации

Таблица;

Гистограмма



Производительность

25 анализов в час

Программа Контроля Качества

Длительное хранение данных контроля качества в табличной и графической форме

Исследуемый материал

Цельная кровь(13 мкл);

Кровь с предварительным разведением(20мкл).



Объем памяти

До 10 000 результатов, включая гистограммы

Калибровка

Автоматическая(по стандарту);

Ручная(по фактору)





Гематологический анализатор СА- 700VET

анализатор гематологический abacus junior 5 vet, автоматический для ветеринарии 22 параметров, производительность 30 тест/час diatron, австрия

Основные характеристики


CA- 700 ПТО автоматический гематологический анализатор используется для обнаружения параметры серии эритроцитов и гемоглобина, тромбоцитов и лейкоцитов в крови животных . Эта машина для собаки, кошки, крысы, мыши , кролика, свиньи , молоко коровы, овцы , лошади , корова, коза и четырех видов , определяемых пользователем животных.
 
Параметры теста из гематологического анализатора :
 
WBC лейкоцитов
LYM лимфоцитов
Пн моноциты рассчитывать
ГРА количество гранулоцитов
LYM процент лимфоцитов
ПН моноцитов процент
ГРА процент гранулоцитов
 HGB гемоглобин
РБК количество эритроцитов
 НСТ гематокрита
MCV средний объем эритроцитов
МЧ означает клеток гемоглобин
МСНС средняя концентрация клеток гемоглобина
RDWcv РБК ширина распределения ( CV )
RDWsd РБК ширина распределения (SD)
PLT тромбоцитов
Тромбоцитов РСТ крит
MPV средний объем тромбоцитов
PDW ширина распределения тромбоцитов

 
Технические характеристики гематологический анализатор СА- 700VET


 
1.Parameters ( 22 параметров , в том числе 3 гистограмм )


WBC, RBC , PLT, HGB , LYM # , пн # , GRA # , LYM % , пн % , GRA % , НСТ , MCV , MCH , МСНС , RDW - SD , RDW - CV, РСТ , MPV , PDW
2 . Объем образца 20 мкл
3.Throughput
60 тестов / час, 24 часа полный рабочий день питания на с автоматическим режиме ожидания
4. Тип животных
Собака, Кот , Лошадь, Крыса , мышь, кролик , свинья , коровьего молока , Верблюд , Коза, Овца и четыре вида пользовательского животного
5. Дата хранения
35000 Результаты в том числе 3 гистограмм
6 . Точность:
WBC 109 / L ≤ 2,0%
RBC 1012 / л ≤ 1,5 %
HGB0 -300 г / л ≤ 1,5%
PLT 109 / L ≤ 4,0%
MCV FL ≤ 0,5%
8 . Интерфейс ввода / вывода RS232 , долл. США ( клавиатура, мышь ) , параллельно
9. Report Печать
10.Working Температура окружающей среды :15- 30 ° C, относительная влажность 10% -90%

Гематологический анализатор Abacus Junior 5 Vet

анализатор гематологический microcc-20vet

Анализатор Abacus Junior 5 Vet специально разработан для ветеринарных лабораторий. Делает полный анализ крови по 22 параметрам, включая дифференцировку лейкоцитов на 5 подгрупп. Анализатор Abacus Junior 5 Vet предназначен в первую очередь для собак, кошек, лошадей и других видов животных. Имеет встроенный принтер, функцию самодиагностики для контроля достоверности и точности работы, большой графический жидкокристаллический дисплей, многоуровневая система контроля качества, автоматический пробоотборник для забора пробы и открытую система для любых реагентов. Кроме того анализатор Abacus Junior 5 Vet полностью русифицирован, что облегчает работу для персонала.



Каталог: company -> personal -> user -> 7530 -> files -> lib
lib -> Учебно-методическое пособие. Ставрополь.: Издательство. 2014. 83 с
lib -> Методические указания к выполнению контрольной работы по дисциплине «Ветеринарная радиобиология» Ставрополь 2014
lib -> Методические рекомендации по изучению общетоксического действия фармакологических средств
lib -> Анемия животных
lib -> Болезни системы крови
lib -> Методические указания к выполнению контрольной работы по дисциплине «Ветеринарная радиобиология» Ставрополь 2014
lib -> Вопросы к экзамену по дисциплине «Ветеринарная радиобиология»
lib -> Вопросы к экзамену по дисциплине «Внутренние незаразные болезни животных»

Скачать 463.82 Kb.

Поделитесь с Вашими друзьями:
  1   2   3   4   5   6   7




©zodomed.ru 2024


    Главная страница