Оглавление
-
Введение 3
-
История создания противовирусных препаратов 4
-
Классификация противовирусных препаратов 6
-
Интерфероны 8
-
Противогриппозные препараты 11
-
Противогерпетические препараты 13
-
Лекарственные средства для лечения СПИДа 16
-
Заключение 18
-
Литература 19
Введение.
Вирусы – неклеточные формы жизни, обладающие собственным геном и способные к воспроизведению лишь в клетках более высокоразвитых существ. Для вирусов характерны две формы существования: внеклеточная и внутриклеточная (репродуцирующаяся). Вирусы по составу различаются на две большие группы: простые и сложные. Первые состоят только из белка и нуклеиновой кислоты, тогда как вирусы сложные наряду с этими компонентами содержат в своем составе липиды, углеводы в виде гликопротеидов. Для вирусов характерно большое разнообразие форм нуклеиновых кислот, в том числе таких форм РНК и ДНК, которые отсутствуют у клеточных форм жизни.
Размножение вирусов происходит в клетке. Многие вирусы поглощаются клеткой путем пиноцитоза. Попав в клетку, они освобождаются от оболочки. Первые этапы развития вирусов в клетке в общих чертах состоят в том, что строятся так называемые ранние белки, т.е. белки ферменты, необходимые вирусу для репликации их нуклеиновых кислот. Так называемые поздние белки участвуют в образовании белковых оболочек дочерних вироспор. Из ферментов у вирусов содержащих ДНК, одним из первых синтезируется полимераза РНК, которая строит на нити ДНК информационную РНК. Эта РНК попадает на рибосомы нити и происходит синтез других белков вирусной частицы.
Вирусы, содержащие РНК, синтезируют полимеразу, катализирующую синтез новых частиц вирусной РНК; эта РНК переходит на рибосомы и контролирует синтез белка капсида. Вирус, содержащий РНК, не нуждается в ДНК для размножения и передачи генетической информации.
Вирусы принципиально отличаются от всех других организмов. Назовем их важнейшие особенности:
1. Тело не имеет клеточного строения.
2. Они могут существовать только как внутриклеточные паразиты и не могут размножаться вне клеток тех организмов, в которых они паразитируют.
3. Содержат лишь один тип нуклеиновых кислот - либо РНК, либо ДНК (все клеточные организмы содержат и ДНК, и РНК одновременно). Нет рибосом.
4. Нет обмена веществ. Используется энергия, получаемая за счет обмена веществ в клетках хозяина. Имеют очень ограниченное число ферментов, используют обмен веществ хозяина, его ферменты, энергию, полученную при обмене веществ в клетках хозяина.
5. Зрелые вироспоры ("споры" вирусов) могут существовать вне клетки хозяина, в этот период они не обнаруживают никаких признаков жизни.
В настоящее время известно около 200 форм животных вирусов, 170 растительных вирусов и 50 вирусов, паразитирующих в бактериях. Они объединяются в 20-25 семейств.
Согласно современным представлениям, вирусы лежат на границе "живого" и "неживого", это внеклеточные формы жизни, способные проникать в определенные живые клетки и размножаться только внутри них.
Генетический аппарат вирусов представлен различными формами нуклеиновых кислот, такого разнообразия нет ни у одной из других форм жизни. У всех живых организмов, кроме вирусов, генетический аппарат состоит из двунитевой молекулы дезоксирибонуклеиновой кислоты (ДНК), а рибонуклеиновая кислота (РНК), выполняющая в клетках роль переносчика информации, всегда однонитевая. У вирусов же существуют все возможные варианты устройства генетического аппарата: одно- и двунитевая РНК, одно- и двунитевая ДНК. При этом и вирусная РНК, и вирусная ДНК могут быть либо линейными, либо замкнутыми в кольцо.
К началу XXI века было исследовано свыше 1000 разнообразных вирусов, вызывающих такие заболевания, как грипп, герпес, гепатит, оспа, полиомиелит, цитомегаловирусная инфекция, энцефалит, корь и др. В целом около 80% инфекционных заболеваний, регистрируемых в настоящее время, вызывают вирусы. Первые места по массовости поражения занимают острые респираторные заболевания, грипп, вирусный гепатит, теперь к ним прибавился и СПИД. Широко распространены вирусные заболевания и у животных. Хорошо известны эпидемии вирусов у птиц, овец, коров. В результате эпидемии вируса висны в 30-40-е годы прошлого века исландцы были вынуждены забить более ста пятидесяти тысяч животных. Вирус лейкоза птиц причинил убыток птицеводству США в 1955 году в размере свыше 60 млн долларов. Известна широкая пораженность крупного рогатого скота вирусом лейкоза. В некоторых странах мира им заражено свыше 80% коров и быков.
Вирусные болезни весьма разнообразны и зависят от природы вирусов, их вирулентности, путей проникновения в организм и преодоления естественных защитных барьеров организма. Заражение может произойти через воздух, пищу, молоко, воду, через различные предметы, через укус кровососущих членистоногих (комаров, москитов и клещей). Один из факторов естественной защиты клетки от вирусов – выработка клетками интерферона – вещества, создающего резистентность клетки к вирусу, хотя это защитное действие и кратковременно.
ИСТОРИЯ СОЗДАНИЯ ПРОТИВОВИРУСНЫХ ПРЕПАРАТОВ.
Первым препаратом, предложенным в качестве специфического противовирусного средства, был тиосемикарбазон, вирулоцидное действие которого описал Г.Домагк (1946). Препарат этой группы тиоцетозон обладает некоторой противовирусной активностью, но недостаточно эффективен; его используют в качестве противотуберкулезного средства. Производные этой группы 1, 4-бензохинон-гуанил-гидразинотио-семикарбазон под названием «фарингосепт» (faringosept, Румыния) применяют в виде «перлингвальных» (рассасываемых в полости рта) таблеток для лечения инфекционных заболеваний верхних дыхательных путей (тонзиллит, стоматит и др.)
В дальнейшем был синтезирован метисазон, эффективно подавляющий репродукцию вирусов оспы, а в 1959 г. - нуклеозид идоксуридин, оказавшийся эффективным антивирусным средством, подавляющий вирус простого герпеса и вакцинии (вакцинальная болезнь). Побочные эффекты при системном применении ограничили возможность широкого использования идоксуридина, но он сохранился как эффективное средство для местного применения в офтальмологической практике при герпетических керотитах. Вслед за идоксуридином стали получать другие нуклеозиды, среди которых выявлены высокоэффективные противовирусные препараты, в том числе ацикловир, рибамидин (рибовирин) и другие. В 1964г. был синтезирован амантадин (мидантин), затем ремантадин и другие производные адамантана оказавшиеся эффективными противовирусными средствами. Выдающимся открытием явилось открытие эндогенного интерферона и установление его противовирусной активности. Современная технология рекомбинации ДНК (генетической инженерии) открыла возможность широкого использования интерферонов для лечения и профилактики вирусных и других заболеваний.
Выдающимся событием явилось открытие эндогенного интерферона и установление его противовирусной активности. До 1957 года интерфероны рассматривали как любопытный биологический феномен. Период 1957 – 1967 гг был посвящен исследованию общих закономерностей продукции и действия интерферона. В процессе этой работы установлена универсальность феномена образования этого белка клетками всех позвоночных (от рыб до человека) и разработаны основные методы его получения и очистки.
В 1967 году была доказана ведущая роль высокомолекулярных двунитевых РНК в индукции интерферона и начат поиск наиболее активных препаратов , имеющих перспективу клинического использования.
В течении следующих тринадцати лет (1967 – 1980 годы) был изучен антитулюрогенный эффект интерферона и его индукторов, экспериментально обоснованны принципы супериндукции интерферона. В этот же период было теоретически обоснованно существование сложного многокомпонентного механизма продукции и действие интерферона, что в дальнейшем завершилось выявлением генов и информационных РНК для интерферона и ферментов, осуществляющих его действие. 80 – е годы ознаменовались такими крупными событиями в изучении интерферона и его индукторов:
1) окончательно оформилось учение о системе интерферона;
2) с помощью методов генной инженерии получены перспективные для клинического использования препараты интерферона;
3) доказана множественность генов интерферона (у человека их число приближается к 30);
4) определены показания и противопоказания для клинического использования интерферонов и их индукторов.
В 80 – 90 годы установлено, что действие ряда иммуностимулирующих и противовирусных средств (продигнозан, полудан, арбидол и др.) связано с их интерферогенной активностью, т. е. способностью стимулировать образование эндогенного интерферона.
Отечественными исследователями разработан ряд синтетических и природных (растительного происхождения) препаратов для системного и местного применения при вирусных заболеваниях (бонафтон, арбидол, оксолин, дейтиформин, теброфен, алпизарин и др.). В настоящее время установлено, что действие ряда иммуностимулирующих и противовирусных средств связано с их интерферонной активностью, т.е. способностью стимулировать образование эндогенного интерферона.
Таблица 1. Хронология противовирусных событий.
Год
|
Событие
|
1946
|
Предложен в качестве противовирусного средства тиосемикарбазон. Действие описал Г. Домагк
|
50-е г.
|
Открыт метисазон
|
1957
|
Открыт интерферон Айзексом и Линденманом
|
1957–1967
|
Исследованы общие закономерности продукции и действия интерферона. Установлена универсальность феномена образования этого белка клетками всех позвоночных (от рыб до человека) и разработаны основные методы его получения и очистки
|
1959
|
Открыт идоксуридин, действующий против вируса простого герпеса
|
1964
|
Синтезирован адамантан, затем ремантадин и другие производные адамантана
|
1970
|
Открыт тилорон, индуктор интерферона
|
1967–1980 годы
|
Был изучен антитулюрогенный эффект интерферона и его индукторов, экспериментально обоснованны принципы супериндукции интерферона
|
80–90 годы
|
Установлено, что действие ряда иммуностимулирующих и противовирусных средств (продигнозан, полудан, арбидол и др.) связано с их интерферогенной активностью, т. е. способностью стимулировать образование эндогенного интерферона
|
Классификация противовирусных препаратов
Классификация противовирусных препаратов по происхождению:
-
аналоги нуклеозидов - зидовудин, ацикловир, видарабин, ганцикловир, трифлуридин;
-
производные липидов - саквинавир;
-
производные адамантана - мидантан, ремантадин;
-
производные ладолкарболовой кислоты - фоскарнет;
-
производные тиосемикарбазона - метисазон;
-
препараты, продуцируемые клетками макроорганизма, - интерфероны.
Распределение противовирусных препаратов в зависимости от направленности их действия.
ДНК-содержащие вирусы:
-
вирус простого герпеса - ацикловир, вилацикловир, фоскарнет, видарабин, трифлуридин;
-
цитомегаловирус - ганцикловир, фоскарнет;
-
вирус опоясывающего лишая и ветряной оспы - ацикловир, фоскарнет;
-
вирус натуральной оспы - метисазан;
-
вирус гепатитов В и С - интерфероны.
РНК-содержащие вирусы:
-
вирус иммунодефицита человека - зидовудин, диданозин, зальцитабин, саквинавир, ритонавир;
-
вирус гриппа типа А - мидантан, ремантадин;
-
вирус гриппа типов Б и А - арбидол;
-
респираторно-синцитиальный вирус - рибамидил.
Противовирусные препараты можно разделить, в зависимости от рода заболевания, на группы:
1. Противогриппозные препараты (ремантадин, оксолин и т.д.)
2. Противогерпетические и противоцитомегаловирусные (теброфен, риодоксон и т.д.)
3. Лекарства, влияющие на вирус иммунодефицита человека (азидотимидин, фосфаноформат)
4. Препараты широкого спектра действия (интерфероны и интерфероногены)
Машковский М.Д. предложил следующую классификацию противовирусных препаратов:
А) Интерферон
1. Лейкоцитарный интерферон из донорской крови человека.
2. Очищенный α-интерферон, полученный из донорской крови.
3. Рекомбинантный α2-интерферон, продуцируемый бактериальным штаммом псевдомонады, в генетический аппарат которого встроен ген человеческого лейкоцитарного α2-интерферона.
4. Рекомбинантный интерферон альфа-2в.
5. Рекомбинантный человеческий β1-интерферон.
Б) Индукторы интерферона:
1. Полудан - порошок или пористая масса белого цвета, обладает иммуностимулирующей активностью, т.е. способностью стимулировать выработку эндогенного интерферона и оказывает противовирусное действие.
2. Неовир - действие такое как и у полудана.
В) Производные амантадина и других групп синтетических соединений
1. Ремантадин. Применяется как антипаркинсоническое средство, указывает профилактическое действие в отношении грипозной инфекции, вызванной определёнными штаммами вирусов.
2. Адапромин. Близок к ремантадину.
3. Дейтифорин. Сходен с ремантадином.
4. Арбидол. Противовирусный препарат, оказывающий ингибирующее действие на вирусы гриппа А и В.
5. Бонафтон. Обладает противовирусной активностью в отношении вируса простого герпеса и некоторых аденовирусов.
6. Оксолин. Обладает вируцидной активностью, эффективен при вирусных заболеваниях глаз, кожи, вирусных ринитах; оказывает профилактическое действие при гриппе.
7. Теброфен. Применяют в виде мази при вирусных заболеваниях глаз, а также при заболеваниях кожи вирусной или предпологаемой вирусной этиологии.Может приминятся также для лечения плоских бородавок у детей.
8. Риодоксол. Обладает противовирусной оптимальностью и оказывает противогрибковое действие.
9 .Флореналь. Открывает нейтрализующее действие в отнашении вирусов.
10 Метисазон. Подавляет репродукцию вируса основной группы: обладает профилактической активностью в отнашении вируса оспы и облегчает течение поствакцинальных осложнений, задерживает распространение кожного процесса, способствует более быстрому подсыханию эффеораций. Имеются данные об эффективности метисазона при лечении рецидивирующего генитального герпеса.
Г) Нуклеозиды:
1. Идоксуридин. Применяют при кератитах в офтальмологии.
2. Ацикловир. Эффективен в отношении вирусов простого герпеса и опоясывающего герпеса. Оказывает иммуностимулирующее действие.
3. Ганцикловир. По сравнению с ацикловиром ганцикловир более эффективен и, кроме того, действует не только на вирус герпеса, но и на цитомегаловирус.
4. Фамцикловир. Имеет такие же функции, как и ганцикловир.
5. Рибамидил. Рибамидил, подобно ацикловиру, обладает противовирусной активностью. Ингибирует синтез вирусных ДНК и РНК.
6. Зидовудин. Противовирусный препарат, ингибирующий репликацию ретровирусов, включая вирус иммунодефицита человека (ВИЧ).
Д) Противовирусные препараты растительного происхождения:
1. Флакозид. Получают из листьев бархата амурского семейства рутовых. Препарат эффективен в отношении ДНК-вирусов.
2. Алпидарин. Получена из травы Koneermena альпийского и копеечника желтеющего, семейства бобовых. Эффективен в отношении ДНК-содержащих вирусов группы герпеса. Ингибирующее действие на репродукцию вируса простого герпеса проявляется преимущественно на ранних стадиях развития вируса.
3. Холепин. Очищенный экстракт из части растения мепедеци копеечковой, семейства бобовых. Обладает противовирусной активностью в отношении ДНК-содержащих вирусов группы герпеса.
4. Лигосин. Применяют при герпетических заболеваниях кожи.
5. Госсипол. Продукт получаемый при переработке семян хлопка или из корней хлопчатника, семейства мальвовых. Препарат обладает активностью в отношении различных штаммов вирусов, в том числе дерматотропных штаммов вируса герпеса. Оказывает слабое действие на грамположительные бактерии.
По источникам получения и химической природе их разделяют на следующие группы:
1) интерфероны (эндогенного происхождения и получаемые генно-инженерным путем, их производные и аналоги);
2) синтетические соединения (амантадины, арбидол, бонафтон и др.);
3) вещества растительного происхождения (алпизарин, флакозид и др.).
Интерфероны
Противовирусная активность.
Интерфероны — это мошные цитокины, обладающие противовирусным, иммуномодулируюшим и антипролиферативным действием. Они синтезируются клетками под воздействием различных факторов и запускают биохимические механизмы защиты клеток того же вида животных от вирусов. В организме человека вырабатываются три группы интерферонов, обладающих противовирусным действием- альфа (более 18 представителей), бета и гамма. Применяемые в клинической практике рекомбинантные интерфероны альфа -это негликозилированные белки с молекулярной массой около 19 500.
Синтез интерферонов альфа может идти почти во всех клетках. Пусковыми стимулами для образования интерферонов могут служить вирусы, двухцепочечная РНК некоторые цитокины (в том числе ИЛ-1, ИЛ-2, ФНО) другие факторы. Интерферон у вырабатывается только Т- и NK-лимфоцитами при их стимуляции антигенами митогенами и некоторыми цитокинами. Функции интерферонов альфа и бетта разнообразны: они обладают противовирусным и антипролиферативным действием; усиливают цитотоксическую активность Т-лимфоцитов, NK-лимфоцитов и макрофагов; повышают экспрессию антигенов HLA класса I и других поверхностных антигенов. Интерферон гамма менее активен в отношении вирусов, но оказывает более сильное иммуномодулирующее действие: активирует макрофаги, стимулирует экспрессию антигенов HLA класса II и опосредует местные воспалительные реакции.
Интерфероны подавляют репродукцию большинства вирусов животных, но на многие ДНК-содержащие вирусы действуют слабо. Данные о противовирусной активности интерферонов сильно различаются в зависимости от вируса и метода анализа. Биологическую активность интерферонов определяют обычно по их противовирусному действию в культуре клеток и выражают в международных единицах (ME) в соответствии с общепринятыми стандартами.
Механизм действия.
Связывание интерферонов со специфическими клеточными рецепторами активирует внутриклеточную передачу сигнала, в которой участвуют Янус-киназы и факторы транскрипции STAT. В результате комплекс белков STAT отщепляется от рецептора и перемещается в клеточное ядро, где взаимодействует с генами, несущими интерферон-чувствительный регуляторный элемент. Тем самым запускается синтез более двух десятков белков, действие которых направлено на подавление вируса. Интерфероны действуют на все основные этапы репродукции вируса: проникновение в клетку и раздевание, синтез вирусной мРНК, трансляцию вирусных белков, сборку и выход вируса из клетки. Самое грозное для многих вирусов свойство интерферонов — подавление синтеза вирусных белков. Интерфероны индуцируют выработку 2',5'-олигоаденилат-синтетаз и протеинкиназы PKR. В присутствии двухцепочечной РНК под действием 2',5'-олигоаденилатсинтетаз образуются 2',5'-олигоаденилаты, которые, в свою очередь, активируют рибонуклеазу L, расщепляющую как вирусные, так и клеточные одноцепочечные РНК. Протеинкиназа PKR избирательно фосфорилирует и тем самым блокирует фактор инициации трансляции eIF2a, без которого невозможен синтез вирусных белков. Кроме того, она может запускать апоптоз. Интерфероны индуцируют также фосфодиэстеразу, которая отщепляет часть молекулы тРН К, что препятствует элонгации полипептидной цепи. В зависимости от вида вируса интерфероны могут действовать на различных этапах его репродукции. Некоторые вирусы способны подавлять выработку индуцируе мых интерферонами ферментов или снижать их активность. Так, один из механизмов устойчивости вируса гепатита С к интерферонам обусловлен способностью этого вируса подавлять протеинкиназу PKR (Francois et al., 2000).
Между интерферонами и другими компонентами иммунной системы существуют сложные взаимодействия. Интерфероны могут действовать на вирус напрямую или опосредованно — за счет изменения иммунного ответа. Например, повышая экспрессию антигенов HLA, они стимулируют лизис зараженных клеток цитотоксическимиТ-лимфоцитами. Помимо собственно противовирусного действия интерфероны участвуют в некоторых общих реакциях организма на вирусную инфекцию, в том числе в патологических иммунных реакциях, сопровождающихся повреждением тканей.
Фармакокинетика.
При приеме интерферонов внутрь обнаружить их в плазме не удается, а уровень 2',5'-олигоаденилатсинтетазы в лимфоцитах почти не повышается (Wills, 1990). Зато при в/м или п/к введении интерферон а всасывается более чем на 80%. Сывороточная концентрация интерферона а зависит от дозы; через 4—8 ч после введения она достигает максимума, а через 18—36 ч возвращается к исходному уровню. При однократном введении уровень 2',5'-олигоаденилатсинтетазы в лимфоцитах крови (показатель биологической активности интерферона) начинает возрастать через 6 ч и остается выше исходного уровня в течение 4 сут. Через 24 ч после введения интерферона а противовирусная активность лимфоцитов крови становится максимальной, а затем медленно (в течение 6 сут) возвращается к исходному уровню. Всасывание интерферона у при в/м или п/к введении менее постоянно, а сывороточная концентрация интерферона при таком введении невелика, хотя уровень 2',5'-олигоаденилатсинтетазы в лимфоцитах крови может повышаться. Объем распределения интерферона а составляет в среднем 31л. При системном применении низкие концентрации интерферона о обнаруживают в секретах дыхательных путей, СМЖ, водянистой влаге и головном мозге.
Поскольку действие интерферонов длится достаточно долго, то судить о нем на основании обычных фармакокинетических показателей сложно. При в/в введении динамика элиминации интерферона а из плазмы сложна и описывается несколькими экспоненциальными функциями (Bocci, 1992). Т1/2 интерферона а составляет около 40 мин, а рекомбинантных интерферонов Риу — около 4 ч и 30 мин соответственно. Элиминация интерферонов из плазмы зависит от их распределения в организме, захвата клетками и распада, который происходит главным образом в печени и почках. С мочой выводится лишь очень незначительное количество интерферонов.
Присоединение к интерферонам инертного полимера полиэтиленгликоля значительно замедляет их элиминацию из плазмы. Получаемые при этом интерфероны длительного действия (конъюгированные интерфероны, или пегинтерфероны) можно вводить всего 1 раз в неделю. Кроме того, присоединение полиэтиленгликоля снижает иммуногенность белковых препаратов. С ростом молекулярной массы полиэтиленгликоля возрастает Т1/2 препарата, уменьшаются его почечный клиренс и относительная противовирусная активность. В крупных клинических испытаниях изучена эффективность двух конъюгированных интерферонов. Пегинтерферон а-2Ь получен присоединением к интерферону а-2Ь линейной молекулы полиэтиленгликоля с молекулярной массой 12000. Т1/2 такого препарата увеличен с 2—3до54ч (Glueetal., 2000). Пегинтерферона-2а содержит эфир разветвленного полиэтиленгликоля с молекулярной массой 40 000; его Т1/2 еще выше — в среднем 77 ч. Около 70% пегинтерферона а-2Ь и большая часть пегинтерферона а-2а элиминируются путем печеночного метаболизма. Побочные эффекты. Через несколько часов после введения интерферонов (в дозе 1—2 млн МЕ и больше) часто возникает гриппоподобный синдром с лихорадкой, ознобом, головной болью, миалгией, артралгией, тошнотой, рвотой и поносом (Dusheiko, 1997). Лихорадка обычно длится не более 12 ч, при приеме жаропонижающих препаратов перед введением интерферона она выражена слабее. В большинстве случаев со временем переносимость интерферона улучшается. Гриппоподобное состояние, неприятные ощущения в месте инъекции и лейкопения возникали почти у половины больных с остроконечными кондиломами при введении интерферона в кондилому.
При системном применении интерферон может вызывать угнетение кроветворения (нейтропению и тромбоцитопению), нарушения со стороны ЦНС (сонливость, спутанность сознания, изменение поведения, редко — эпилептические припадки), тяжелую астению с повышенной утомляемостью и потерей веса, аутоиммунные нарушения (в том числе хронический лимфоцитарный тиреоидит), реже — сердечно-сосудистые нарушения (артериальную гипотонию и тахикардию). Эти побочные эффекты препятствуют повышению дозы. Иногда отмечаются повышение активности печеночных ферментов и уровня триглицеридов в крови, алопеция, протеинурия и азотемия, интерстициальный нефрит, образование аутоантител. У детей при лечении интерфероном нередко возникают изменения личности и алопеция (Sokal et al., 1998). Изредка при введении интерферонов к ним вырабатываются нейтрализующие антитела, и тогда дальнейшее лечение становится бесполезным (Antonelli et al., 1991). Введение интерферонов может отрицательно сказываться на репродуктивной функции. Их безопасность при беременности не установлена.
Интерфероны замедляют инактивацию некоторых препаратов (например, теофиллина) микросомальными ферментами печени. В результате сывороточная концентрация таких препаратов повышается. Угнетение кроветворения, вызванное другими препаратами (например, зидовудином), на фоне введения интерферонов может усиливаться.
Переносимость конъюгированных интерферонов не хуже, чем обычных: отменять лечение приходится в 6—11% случаев. Тем не менее, по данным некоторых исследований, конъюгированные интерфероны несколько чаще вызывают лихорадку, тошноту и воспалительную реакцию в месте инъекции. Не ясно пока, представляет ли опасность накопление и длительное пребывание полиэтиленгликоля в организме.
Противогриппозные препараты.
Арбидол — производное индолкарбоновой кислоты. Механизм действия препарата складывается из подавления репродукции вируса гриппа, влияния на синтез ИФН, повышения количества Т-лимфоцитов и функциональной активности макрофагов, а также антиоксидантного эффекта.
Препарат проникает в неизмененном виде как в незараженные, так и в зараженные клетки и определяется в ядерной и цитоплазматической фракциях. Арбидол ингибирует процесс слияния липидной вирусной оболочки с мембранами эндосом (при рН 7,4), приводящий к высвобождению вирусного генома и началу транскрипции. В отличие от амантадина и римантадина, Арбидол ингибирует освобождение самого нуклеокапсида от наружных белков, нейраминидазы и липидной оболочки. Таким образом, Арбидол действует на ранних стадиях вирусной репродукции.
У препарата отсутствует штаммовая специфичность (в культурах клеток он подавляет репродукцию вируса гриппа А на 80%, вируса гриппа В — на 60% и вируса гриппа С — на 20%, а также воздействует и на вирус птичьего гриппа, однако слабее, чем на репродукцию человеческих штаммов вируса гриппа).
Синтез ИФН нарастает, начиная с приема 1 таблетки до 3 таблеток. Однако дальнейшего увеличения уровня ИФН при приеме Арбидола не наблюдается. Быстрое нарастание синтеза ИФН может оказывать профилактическое действие при приеме препарата до начала заболевания гриппом.
Арбидол оказывает иммуномодулирующее действие, приводя к повышению общего количества Т-лимфоцитов и Т-хелперов. Причем нормализация данных показателей наблюдалась у пациентов с исходно сниженным числом CD3- и CD4-клеток, а у лиц с нормальным функционированием клеточного звена иммунитета практически отсутствовали изменения количества Т-лимфоцитов и Т-хелперов. При этом применение Арбидола не ведет к существенному снижению абсолютного числа Т-супрессорных лимфоцитов — таким образом, стимулирующая активность препарата не связана с угнетением функции супрессорных клеток. Арбидол увеличивает общее число макрофагов с поглощенными бактериями и фагоцитарное число. Предполагается, что активирующими стимулами для фагоцитарных клеток явились цитокины и, в частности, ИФН, продукция которого усиливается под воздействием препарата. Увеличивается также содержание натуральных киллеров — NK-клеток, что позволяет характеризовать препарат как индуктор активности естественных киллеров.
Препарат быстро всасывается из желудочно-кишечного тракта (ЖКТ). Т1/2 составляет 16–21 ч. Экскретируется в неизмененном виде с калом (38,9%) и мочой (0,12%). В течение первых суток выводится 90% введенной дозы.
Лекарственные взаимодействия Арбидола с другими лекарственными препаратами в литературе не описаны.
Практически единственными побочными эффектами препарата являются аллергические реакции. Препарат разрешен к применению с 2-летнего возраста.
Арбидол обладает достаточно широким спектром противовирусного действия и используется для профилактики и лечения гриппа типов А и В, в том числе осложненного бронхитом и пневмонией; острых респираторных заболеваний (ОРВИ); хронического бронхита, пневмонии, рецидивирующей герпетической инфекции; в послеоперационном периоде — для нормализации иммунного статуса и профилактики осложнений.
Амантадин и римантадин — производные адамантана. Оба препарата даже в малых дозах подавляют репродукцию вируса А. Их противовирусная активность обусловлена двумя механизмами.
Во-первых, они действуют на раннем этапе вирусной репродукции, подавляя «раздевание» вируса. Первичная мишень для этих препаратов — белок М2 вируса гриппа А, формирующий ионный канал в его оболочке. Подавление функции данного белка приводит к тому, что протоны из эндосом не могут попасть внутрь вируса, блокируется диссоциация рибонуклеида и выход вируса в цитоплазму.
Во-вторых, они могут действовать и на этапе сборки вируса, по-видимому, за счет изменения процессинга гемагглютинина. Этот механизм возможен у некоторых штаммов вирусов.
Среди диких штаммов устойчивость к препаратам возникает редко, однако от больных, принимающих их, получают устойчивые штаммы. Чувствительность и устойчивость вирусов к амантадину и римантадину перекрестная.
Оба препарата хорошо всасываются при приеме внутрь, имеют большой объем распределения. Большая часть амантадина выводится с мочой в неизмененном виде. Период полувыведения (Т1/2) у молодых людей составляет 12–18 ч, у пожилых возрастает почти вдвое, а при почечной недостаточности увеличивается еще больше. Поэтому дозу препарата необходимо уменьшать даже при незначительном изменении функции почек. Римантадин активно метаболизируется в печени, Т1/2 в среднем составляет 24–36 ч, 60–90% препарата выводится с мочой в виде метаболитов.
При приеме обоих препаратов наиболее часто отмечают незначительные дозозависимые нарушения со стороны ЖКТ (тошнота, снижение аппетита) и центральной нервной системы (ЦНС) (раздражительность, бессонница, нарушение концентрации внимания). При приеме высоких доз амантадина возможно значительное нейротоксическое действие: спутанность сознания, галлюцинации, эпилептические припадки, кома (эти эффекты могут усиливаться при одновременном приеме Н1-блокаторов, М-холиноблокаторов, психотропных средств и этанола). Безопасность применения во время беременности не установлена. Разрешено применение с 7-летнего возраста.
Препараты применяются для профилактики и лечения гриппа А. Их прием во время эпидемий гриппа позволяет избежать инфекции в 70–90% случаев. У лиц с неосложненным гриппом А лечение препаратами в течение 5 дней в возрастных дозировках, начатое на ранней стадии заболевания, на 1–2 сут уменьшает длительность лихорадки и общих симптомов, ускоряет выздоровление и иногда сокращает период выделения вируса.
Осельтамивир является неактивным предшественником, который в организме превращается в активный метаболит — осельтамивира карбоксилат. Он является переходным аналогом сиаловой кислоты и избирательным ингибитором нейраминидазы вирусов гриппа А и В. Кроме того, он подавляет штаммы вируса гриппа А, устойчивые к препаратам — производным адамантана.
Нейраминидаза вируса гриппа отщепляет концевые остатки сиаловых кислот и, таким образом, разрушает рецепторы, находящиеся на поверхности клеток и новых вирусов, т. е. способствует выходу вируса из клетки по окончании репродукции. Активный метаболит осельтамивира вызывает изменения в активном центре нейраминидазы и подавляет ее активность. Происходит агрегация вирусов на поверхности клетки и замедляется их распространение.
Устойчивые штаммы вируса гриппа А обнаруживают у 1–2% больных, принимающих препарат. Устойчивых штаммов вируса гриппа В на сегодняшний день не обнаружено.
При приеме внутрь препарат хорошо всасывается. Прием пищи не влияет на его биодоступность, но снижает риск побочного действия на ЖКТ. Препарат подвергается ферментативному гидролизу в ЖКТ и печени с образованием активного метаболита. Объем распределения препарата приближается к объему жидкости в организме. Т1/2 осельтамивира и его активного метаболита составляет 1–3 и 6–10 ч соответственно. Оба соединения выводятся главным образом почками в неизмененном виде.
При приеме внутрь возможны незначительные неприятные ощущения в животе и тошнота, которые уменьшаются при приеме препарата во время еды. Желудочно-кишечные расстройства обычно проходят через 1–2 сут, даже если больной продолжает прием препарата. Клинически значимых взаимодействий осельтамивира с другими препаратами не выявлено. Препарат применяют у детей старше 1 года.
Осельтамивир применяют для лечения и профилактики гриппа. Профилактический прием осельтамивира в период эпидемий снижает заболеваемость как среди вакцинированных противогриппозной вакциной, так и среди невакцинированных. При лечении гриппа этим препаратом выздоровление наступает на 1–2 сут раньше, а количество бактериальных осложнений снижается на 40–50%.
Противогерпетические препараты.
Вирус простого герпеса типа 1 вызывает поражение кожи, рта, пищевода и головного мозга, вирус простого герпеса типа 2 — поражение наружных половых органов, прямой кишки, кожи и мозговых оболочек. Первым из допущенных к применению противогерпетических препаратов был видарабин (1977). Однако ввиду высокой токсичности его применяли для лечения заболеваний, вызванных вирусом простого герпеса и Varicella–zostervirus, лишь по жизненным показаниям. С 1982 г. для лечения больных с менее тяжелым течением заболевания стали применять ацикловир.
Ацикловир — ациклический аналог гуанозина, а валацикловир — L-валиновый эфир ацикловира. Ацикловир подавляет синтез вирусной ДНК после фосфорилирования вирусной тимидинкиназой внутри зараженных клеток. Образующийся в клетке ацикловиртрифосфат встраивается в синтезируемую в клетке-хозяине цепь ДНК, что приводит к прекращению роста вирусной цепи ДНК. Молекула ДНК, в состав которой входит ацикловир, связывается с ДНК-полимеразой, необратимо инактивируя ее.
Устойчивость вируса может возникнуть в результате снижения активности вирусной тимидинкиназы и изменения вирусной ДНК-полимеразы. Изменение активности ферментов возникает в результате мутаций.
Биодоступность ацикловира при приеме внутрь составляет всего 10–30% и уменьшается с увеличением дозы. В отличие от ацикловира, биодоступность валацикловира при приеме внутрь достигает 70%. Препарат быстро и почти полностью превращается в ацикловир. Ацикловир проникает во многие биологические жидкости, в том числе в содержимое везикул при ветряной оспе, спинно-мозговую жидкость, накапливается в молоке, околоплодных водах и плаценте. Концентрация его во влагалищном содержимом колеблется в широких пределах. Сывороточная концентрация препарата у матери и новорожденного примерно одинаковы. Через кожу препарат практически не всасывается. Т1/2 ацикловира составляет в среднем у взрослых 2,5 ч, у новорожденных — 4 ч, у больных с почечной недостаточностью может увеличиваться до 20 ч. Препарат практически полностью выводится почками в неизмененном виде. При беременности фармакокинетика препаратов не меняется.
Как правило, ацикловир переносится хорошо. При применении мази на основе полиэтиленгликоля возможно раздражение слизистой половых органов и чувство жжения. При приеме внутрь препарат изредка вызывает головную боль, головокружение, сыпь и диарею. Еще реже отмечаются почечная недостаточность и нейротоксическое действие. Побочные эффекты валацикловира сходны с таковыми у ацикловира — тошнота, диарея, головная боль; высокие дозы могут вызвать спутанность сознания, галлюцинации, поражения почек и — очень редко — тромбоцитопению. При внутривенном введении больших доз ацикловира могут развиться почечная недостаточность и поражения ЦНС.
Фамцикловир сам неактивный, но при первом прохождении через печень быстро превращается в пенцикловир.
Пенцикловир — это ациклический аналог гуанозина. Механизм действия препарата сходен с механизмом действия ацикловира. Как и ацикловир, пенцикловир действует главным образом на вирусы простого герпеса и Varicella–zostervirus. Устойчивость к пенциклавиру в клинике встречается редко.
В отличие от пенцикловира, биодоступность которого при приме внутрь составляет лишь 5%, фамцикловир хорошо всасывается. При приеме фамцикловира биодоступность пенцикловира возрастает до 65–77%. Прием пищи совместно с препаратом замедляет всасывание последнего, но в целом биодоступность не снижается. Объем распределения пенцикловира в 2 раза превышает объем жидкости в организме, Т1/21/2 увеличивается до 9,9 ч. Препарат легко удаляется при гемодиализе.
Переносится ацикловир хорошо, но иногда возможно возникновение головной боли, тошноты, диареи, крапивницы, а у пожилых людей — галлюцинаций и спутанности сознания. Препараты для местного применения могут вызвать контактный дерматит и изъязвления.
Безопасность препарата во время беременности, а также взаимодействие его с другими лекарственными средствами не установлена.
Ганцикловир — это ациклический аналог гуанозина. Механизм действия препарата сходен с механизмом действия ацикловира. Активен в отношении всех герпесвирусов, но наиболее эффективен в отношении цитомегаловируса.
Биодоступность ганцикловира при приме внутрь во время еды составляет 6–9% и несколько меньше при приеме натощак. Валганцикловир хорошо всасывается и быстро гидролизуется до ганцикловира, биодоступность которого возрастает до 61%. При приеме валганцикловира во время еды биодоступность ганцикловира повышается еще на 25%. При нормальной функции почек Т1/2 составляет 2–4 ч. Более 90% препарата выводится почками в неизмененном виде. При почечной недостаточности Т1/2 увеличивается до 28–40 ч.
Основной дозалимитирующий побочный эффект ганцикловира — угнетение кроветворения (нейтропения, тромбоцитопения). У 5–15% больных отмечают поражения ЦНС разной степени тяжести (от головной боли до судорог и комы). При внутривенном введении возможны флебиты, азотемия, анемия, сыпи, лихорадка, изменение биохимических показателей печени, тошнота, рвота, эозинофилия.
У лабораторных животных препарат оказывал тератогенное и эмбриотоксическое действие, необратимо нарушал репродуктивную функцию. Цитостатические препараты усиливают побочное действие ганцикловира на костный мозг.
Валацикловир — пролекарство, в организме быстро и почти полностью превращается в ацикловир, который после фосфорилирования приобретает специфическую активность. Ацикловир является структурным аналогом пуриновых нуклеозидов (нормальные компоненты ДНК), взаимодействует с вирусной ДНК-полимеразой и блокирует размножение вирусов. Избирательная противогерпетическая активность обусловлена сродством к тимидинкиназе Herpes simplex, Varicella zoster и вируса Эпштейна-Барр. Под действием тимидинкиназы вирусов трансформируется в ацикловирмонофосфат, при участии гуанилаткиназы клеток человека — в ацикловирдифосфат и затем — в активную форму ацикловиртрифосфат. Трифосфат блокирует репликацию вирусной ДНК за счет конкурентного ингибирования вирусной ДНК-полимеразы и торможения элонгации цепи ДНК. Ацикловир in vitro активен в отношении вирусов Herpes simplex 1 и 2 типа, Varicellа zoster (менее активен, чем в отношении Herpes simplex, вследствие более эффективного фосфорилирования соответствующей тимидинкиназой), вируса Эпштейна-Барр, ЦМВ и человеческого вируса герпеса 6 типа.
Идоксуридин — йодсодержащий аналог тимидина. Механизм противовирусного действия до конца не изучен. Известно, что фосфорилированные производные препарата встраиваются в вирусную и клеточную ДНК, но ингибируют репликацию только вирусной ДНК. При этом ДНК становится более хрупкой, легко разрушается, при ее транскрипции чаще возникают ошибки. Устойчивые штаммы выделяют от больных герпетическим кератитом, получавших идоксуридин. Препарат разрешен лишь для местного применения. При его использовании возможны боль, зуд, воспаление и отек в области глаз, аллергические реакции.
ЛЕКАРСТВЕННЫЕ СРЕДСТВА ДЛЯ ЛЕЧЕНИЯ СПИДА
Размножение вируса иммунодефицита человека (ВИЧ), возбудителя СПИДа, можно приостановить только очень активным и целенаправленным лечением, воздействуя на обменные процессы вируса в инфицированной клетке (А). Сначала нуклеокапсид вируса через гликопротеины связывается с СС)4-молекулой Т-хелпера. Затем в дело вступает капсидный белок, который начинает процесс слияния капсида с клеточной мембраной. В инфицированной клетке вирусная РНК должна прежде всего транслироваться в ДНК; это происходит также с помощью вирусного фермента обратной траскриптазы. Двухцепочечная ДНК с помощью вирусного фермента интегразы встраивается в геном клетки-мишени. Далее происходит репликация вируса. ДНК вируса управляет синтезом вирусных РНК и белков (обратной транскриптазы и интегразы, а также структурных белков, находящихся на внутренней стороне вирусной оболочки). Продуктами белкового синтеза являются полипептиды — белки-предшественники, несущие на N-конце жирную кислоту (миристи-новую кислоту), с помощью которой они прикрепляются к внутренней стороне плазмалеммы клетки-мишени. Затем вирусная частица отделяется («отпочковывается») от клетки. Во время этого процесса полипептид, содержащий протеазу, расщепляется на отдельные белки с определенными функциями.
I. Нуклеозидные ингибиторы обратной транскриптазы
К ним относятся зидовудин, ставудин, зальцитабин, диданозин и ламивудин. Эти вещества представляют собой нуклео-зиды с аномальным сахарным остатком, который затем фосфорилируется. Аномальные трифосфаты блокируют обратную транскриптазу и могут вызывать обрыв синтеза цепи вирусной ДНК. Препараты вводятся перорально. Они различаются по побочным эффектам (например, лейкопения при приеме зидовудина, периферийная нейропатия или панкреатит при приеме других средств) и механизму развития резистентности. Для лечения СПИДа применяют комбинацию из двух препаратов этой группы и одного ненуклеозидного ингибитора, либо одного-двух ингибиторов ВИЧ-протеазы.
На сегодняшний день ФДА разрешены к применению шесть нуклеозидных ингибиторов обратной транскриптазы, отличающиеся друг от друга механизмами фосфорилирования и побочными эффектами. Среди этих препаратов есть как проверенные временем (например, зидовудин и диданозин), так и одобренные ФДА сравнительно недавно (абакавир). Нуклеозидные ингибиторы обратной транскриптазы пробовали применять в виде монотерапии или в комбинациях из двух препаратов, но сейчас они входят в состав надежных схем лечения, включающих 3—4 препарата. Недавние исследования показали, что нуклеозидные ингибиторы обратной транскриптазы могут вызвать лактацидоз, выраженную гепатомегалию и жировую дистрофию печени.
II. Ингибиторы ВИЧ-протеаз
Препараты препятствуют расщеплению неактивного белка-предшественника и, следовательно, созреванию вируса. Применяются перорально.
Саквинавир можно назвать аномальным пептидом. Его биодоступность ограничена. Другие ингибиторы протеаз: ритонавир, индинавир, нелфинавир, ампренавир. Они характеризуются высокой биодоступностью; ингибируют активность CYP, так что необходимо учитывать возможные взаимодействия с лекарствами. При длительном применении возможно перераспределение жировой ткани в организме и нарушение обмена веществ (гиперлипидемия, инсулиновая резистентность, гипергликемия).
Почти все разрешенные к применению ингибиторы протеазы ВИЧ резко подавляют репродукцию ВИЧ-1, и через 4— 12 нед монотерапии концентрация РНК ВИЧ-1 в плазме снижается в 100—1000 раз. Исключение составляет саквинавир в твердых желатиновых капсулах, который из-за низкой биодоступности назначают вместе с ритонавиром. Относительная эффективность каждого из препаратов в отдельности не установлена, так как сравнительные исследования их почти не проводились. При назначении мощного ингибитора протеазы ВИЧ в комбинации с двумя нуклеозидными ингибиторами обратной транскриптазы ранее нелеченным больным у 60—95% из них вирусная РНК в плазме перестает определяться. Неэффективность таких комбинаций в большинстве, если не во всех, случаях обусловлена тем, что больные не соблюдают схему лечения.
III. Ингибиторы слияния
Энфувиртид является пептидом, препятствующим необходимому пространственному изменению белка слияния посредством специфического связывания с ним.
Является резервным терапевтическим средством.
Появление полирезистентных штаммов ВИЧ требует разработки новых антиретровирусных препаратов, действующих не только на обратную транскриптазу или протеазу ВИЧ, но и на другие молекулярные мишени. Они действуют на различные стадии жизненного цикла ВИЧ: адсорбцию и слияние вируса с клеточной мембраной, встраивание его генетического материала в геном клетки-хозяина и сборку. Еще одно возможное направление — блокаторы регуляторных белков ВИЧ (в частности, Tat). Можно надеяться, что хотя бы некоторые из новых препаратов будут подавлять репродукцию устойчивых штаммов ВИЧ, давать меньше побочных эффектов и допускать менее частый прием, чем нынешние.
Уже идут клинические испытания препаратов, действующих на слияние ВИЧ с мембраной клетки-хозяина Случайно было обнаружено, что пептиды, сходные с короткими последовательностями гликопротеида gp41 препятствуют внедрению ВИЧ в клетки (Jiangetal., 1993; Wildetal., 1994). Эти пептиды нарушают взаимодействие между концевыми участками N36 и С34 гликопротеида gp41. Один из таких пептидов — Т-20 (или DP-178), состоящий из 36 аминокислот, — связывается с гидрофобной щелью свернутого в спираль N-концевого участка (N36) gp41, блокируя тем самым слияние ВИЧ с мембраной и проникновение его в клетку. Концентрация Т-20, на 50% подавляющая репродукцию ВИЧ-1, составляет 50—60 нмоль/л (Sodroski, 1999). В предварительном клиническом испытании Т-20 в течение 2 нед вводили в/в (в виде монотерапии) 16 ВИЧ-инфицированным. При этом в половине случаев концентрация вирусной РНК снижалась на два порядка (Kilby et al., 1998), что превосходит эффект стандартных комбинаций препаратов (Richman, 1998; Rimsky et al., 1998; Sodroski, 1999). Устойчивые к Т-20 штаммы ВИЧ возникают из-за мутаций гена gp41 (Rimsky et al., 1998). Проводятся испытания Т-20 в комбинации с другими препаратами. Недостатком Т-20 является то, что, будучи крупным пептидом, он не всасывается при приеме внутрь; поэтому его приходится вводить п/к или в/в (2 раза в сутки). Ведутся поиски ингибиторов слияния ВИЧ с клеткой с меньшей молекулярной массой, способных всасываться в ЖКТ.
Заключение.
Успехи антимикробной терапии ХХ столетия привели к почти полному контролю над бактериальными инфекциями. Задачей инфекционистов и фармакологов ХХI века является обеспечение контроля над вирусной инфекцией. Помимо высокой эффективности новые противовирусные препараты должны обладать хорошей переносимостью. В настоящее время разрабатываются новые средства с принципиально новыми механизмами действия. Перспективными могут оказаться средства для подавления патологических иммунных реакций и иммунотерапия моноклональными антителами и вакцинами.
Литература.
-
Современные лекарственные препараты. Энциклопедический справочник - В. Георгиянц, И. Владимирова - 2012 год - 590 с.
-
Лекарственные средства, 16-е издание - Машковский М.Д. - 2012 год - 1216 с.
-
Клиническая фармакология. Учебник /под ред.В.Г. Кукеса/ «Гэотар - Медицина», 2004, 917 с.
-
Клиническая фармакология и фармакотерапия (руководство для врачей) / Ю.Б. Белоусов, В.С. Моисеев, В.К. Лепахин/ М. «Универсум», 2006, 920 с.
-
Бурбелло А.Т. Современные лекарственные средства. – СПб. – М., Нева, 2005.
-
Клиническая фармакология по Гудману и Гильману / Под общ. ред. А.Г. Гильма-на, ред. Дж. Хардман и Л. Лимберт. В 4-х тт. Пер. с англ. – М., Практика, 2006.
-
Муляр А.Г., Бунятян Н.Д., Саядян Х.С. Фармакология. Учебник. – М., Триада-Х, 2010.
Поделитесь с Вашими друзьями: |