Принципы и методы лучевой диагностики


Основные рентгенологические методы



Скачать 69.32 Kb.
страница3/13
Дата05.03.2018
Размер69.32 Kb.
ТипГлава
1   2   3   4   5   6   7   8   9   ...   13
Основные рентгенологические методы:рентгенография, рентгеноскопия, компьютерная рентгеновская томография.

Рентгенографию и рентгеноскопию выполняют на рентгеновских аппаратах. Их основными элементами являются питающее устройство, излучатель (рентгеновская трубка), устройства для формирования рентгеновского излучения и приемники излучения. Рентгеновский аппарат питается от городской сети переменным током. Питающее устройство повышает напряжение до 40-150 кВ и уменьшает пульсацию, в некоторых аппаратах ток практически постоянный. От величины напряжения зависит качество рентгеновского излучения, в частности, его проникающая способность. С увеличением напряжения энергия излучения возрастает. При этом уменьшается длина волны и увеличивается проникающая способность получаемого излучения.

Рентгеновская трубка − это электровакуумный прибор, преобразующий электрическую энергию в энергию рентгеновского излучения. Важным элементом трубки являются катод и анод.

При подаче тока низкого напряжения на катод нить накала нагревается и начинает испускать свободные электроны (электронная эмиссия), образуя электронное облако вокруг нити. При включении высокого напряжения электроны, испускаемые катодом, ускоряются в электрическом поле между катодом и анодом, летят от катода к аноду и, ударяясь о поверхность анода, тормозятся, выделяя кванты рентгеновского излучения. Для уменьшения влияния рассеянного излучения на информативность рентгенограмм используют отсеивающие решетки.

Приемниками рентгеновского излучения являются рентгеновская пленка, флюоресцирующий экран, системы цифровой рентгенографии, а в КТ – дозиметрические детекторы.

Рентгенография рентгенологическое исследование, при котором получают изображение исследуемого объекта, фиксированное на светочувствительном материале. При рентгенографии снимаемый объект должен находиться в тесном соприкосновении с кассетой, заряженной пленкой. Рентгеновское излучение, выходящее из трубки, направляют перпендикулярно на центр пленки через середину объекта (расстояние между фокусом и кожей больного в обычных условиях работы 60-100 см). Необходимым оснащением для рентгенографии являются кассеты с усиливающими экранами, отсеивающие решетки и специальная рентгеновская пленка. Для отсеивания мягких рентгеновских лучей, которые могут достигнуть пленки, а также вторичного излучения используются специальные подвижные решетки. Кассеты делаются из светонепроницаемого материала и по величине соответствуют стандартным размерам выпускаемой рентгеновской пленки (13 × 18 см, 18 × 24 см, 24 × 30 см, 30 × 40 см и др.).

Рентгеновская пленка покрывается обычно с двух сторон фотографической эмульсией. Эмульсия содержит кристаллы бромида серебра, которые ионизируются фотонами рентгеновских лучей и видимого света. Рентгеновская пленка находится в светонепроницаемой кассете вместе с рентгеновскими усиливающими экранами (РЭУ). РЭУ представляет собой плоскую основу, на которую наносят слой рентгенолюминофора. На рентгенографическую пленку действуют при рентгенографии не только рентгеновские лучи, но и свет от РЭУ. Усиливающие экраны предназначены для увеличения светового эффекта рентгеновых лучей на фотопленку. В настоящее время широко применяются экраны c люминофорами, активированными редкоземельными элементами: бромидом окиси лантана и сульфитом окиси гадолиния. Хороший коэффициент полезного действия люминофора редкоземельных элементов способствует высокой светочувствительности экранов и обеспечивает высокое качество изображения. Существуют и специальные экраны – Gradual, которые могут выравнивать имеющиеся различия в толщине и (или) плотности объекта съемки. Использование усиливающих экранов сокращает в значительной степени время экспозиции при рентгенографии.

Почернение рентгеновской пленки происходит вследствие восстановления металлического серебра под действием рентгеновского излучения и света в ее эмульсионном слое. Количество ионов серебра зависит от числа действующих на пленку фотонов: чем больше их количество, тем больше число ионов серебра. Изменяющаяся плотность ионов серебра формирует скрытое внутри эмульсии изображение, которое становится видимым после специальной обработки проявителем. Обработка заснятых пленок проводится в фотолаборатории. Процесс обработки сводится к проявлению, закреплению, промывке пленки с последующим высушиванием. В процессе проявления пленки осаждается металлическое серебро черного цвета. Неионизированные кристаллы бромида серебра остаются неизмененными и невидимыми. Фиксаж удаляет кристаллы бромида серебра, оставляя металлическое серебро. После фиксации пленка нечувствительна к свету. Сушка пленок проводится в сушильных шкафах, что занимает не менее 15 мин., или происходит естественным путем, при этом снимок бывает готовым на следующий день. При использовании проявочных машин снимки получают сразу после исследования. Изображение на рентгеновской пленке обусловлено различной степенью почернения, вызванного изменениями плотности черных гранул серебра. Наиболее темные области на рентгеновской пленке соответствуют наиболее высокой интенсивности излучения, поэтому изображение называют негативным. Белые (светлые) участки на рентгенограммах называют темными (затемнения), а черные − светлыми (просветления) (рис. 1.2).

Преимущества рентгенографии:



  1. Важное преимущество рентгенографии − высокое пространственное разрешение. По этому показателю с ней не может сравниться ни один метод визуализации.

  2. Доза ионизирующего излучения ниже, чем при рентгеноскопии и рентгеновской компьютерной томографии.

  3. Рентгенографию можно производить как в рентгеновском кабинете, так и непосредственно в операционной, перевязочной, гипсовальной или даже в палате (с помощью передвижных рентгеновских установок).

  4. Рентгеновский снимок является документом, который может храниться длительное время. Его могут изучать многие специалисты.

Недостаток рентгенографии: исследование статическое, отсутствует возможность оценки движения объектов в процессе исследования.

Цифровая рентгенография включает в себя детекцию лучевой картины, обработку и запись изображения, представление изображения и просмотр, сохранение информации. При цифровой рентгенографии аналоговая информация преобразуется в цифровую форму при помощи аналогово-цифровых преобразователей, обратный процесс происходит при помощи цифро-аналоговых преобразователей. Для показа изображения цифровая матрица (числовые строки и колонки) трансформируется в матрицу видимых элементов изображения − пикселов. Пиксел − воспроизводимый системой формирования изображения минимальный элемент картины. Каждому пикселу, в соответствии со значением цифровой матрицы, присваивается один из оттенков серой шкалы. Число возможных оттенков серой шкалы в диапазоне между черным и белым часто определяется на бинарной основе, например, 10 битов = 210 или 1024 оттенка.

В настоящее время технически реализованы и уже получили клиническое применение четыре системы цифровой рентгенографии:

− цифровая рентгенография с экрана электронно-оптического преобразователя (ЭОП);

− цифровая люминесцентная рентгенография;

− сканирующая цифровая рентгенография;

− цифровая селеновая рентгенография.

Преимущества цифровой рентгенографии:


  • снижение дозовых нагрузок на пациентов и медицинский персонал;

  • экономичность в эксплуатации (во время съемки сразу получают изображение, отпадает необходимость использования рентгеновской пленки, других расходных материалов);

  • высокая производительность (около 120 изображений в час);

  • цифровая обработка изображений улучшает качество снимка и тем самым повышает диагностическую информативность цифровой рентгенографии;

  • дешевое цифровое архивирование;

  • быстрый поиск рентгеновского изображения в памяти ЭВМ;

  • воспроизведение изображения без потерь его качества;

  • возможность объединения в единую сеть различного оборудования отделения лучевой диагностики;

  • возможность интеграции в общую локальную сеть учреждения («электронная история болезни»);

  • возможность организации удаленных консультаций («телемедицина»).

Рентгеноскопия– просвечивание органов и систем с применением рентгеновских лучей. Рентгеноскопия – анатомо-функциональный метод, который предоставляет возможность изучения нормальных и патологических процессов органов и систем, а также тканей по теневой картине флюоресцирующего экрана. Исследование выполняется в реальном масштабе времени, т.е. производство изображения и получение его исследователем совпадают во времени. При рентгеноскопии получают позитивное изображение. Видимые на экране светлые участки называют светлыми, а темные − темными.

Преимущества рентгеноскопии:



  • позволяет исследовать больных в различных проекциях и позициях, в силу чего можно выбрать положение, при котором лучше выявляется патологическое образование;

  • возможность изучения функционального состояния ряда внутренних органов: легких, при различных фазах дыхания; пульсацию сердца с крупными сосудами, двигательную функцию пищеварительного канала;

  • тесное контактирование врача-рентгенолога с больным, что позволяет дополнить рентгенологическое исследование клиническим (пальпация под визуальным контролем, целенаправленный анамнез) и т.д.;

  • возможность выполнения манипуляций (биопсий, катетеризаций и др.) под контролем рентгеновского изображения.

Недостатки:

  • сравнительно большая лучевая нагрузка на больного и обслуживающий персонал;

  • малая пропускная способность за рабочее время врача;

  • ограниченные возможности глаза исследователя в выявлении мелких тенеобразований и тонких структур тканей; показания к рентгеноскопии ограничены.

Электронно–оптическое усиление (ЭОУ).Оно основано на принципе преобразования рентгеновского изображения в электронное с последующим его превращением в усиленное световое. Рентгеновский ЭОП представляет собой вакуумную трубку (рис. 1.3). Рентгеновские лучи, несущие изображение от просвечиваемого объекта, попадают на входной люминесцентный экран, где их энергия преобразуется в световую энергию излучения входного люминесцентного экрана. Далее фотоны, испускаемые люминесцентным экраном, попадают на фотокатод, преобразующий световое излучение в поток электронов. Под воздействием постоянного электрического поля высокого напряжения (до 25 кВ) и в результате фокусировки электродами и анодом специальной формы энергия электронов возрастает в несколько тысяч раз и они направляются на выходной люминесцентный экран. Яркость свечения выходного экрана усиливается до 7 тысяч раз, по сравнению с входным экраном. Изображение с выходного люминесцентного экрана при помощи телевизионной трубки передается на экран дисплея. Применение ЭОУ позволяет различать детали величиной 0,5 мм, т.е. в 5 раз более мелкие, чем при обычном рентгеноскопическом исследовании. При использовании этого метода может применяться рентгенокинематография, т.е. запись изображения на кино- или видеопленку и оцифровывание изображения при помощи аналого-цифрового преобразователя.

Рентгеновская компьютерная томография (КТ).Создание рентгеновской компьютерной томографии явилось важнейшим событием в лучевой диагностике. Свидетельством этого является присуждение Нобелевской премии в 1979 г. известным ученым Кормаку (США) и Хаунсфилду (Англия) за создание и клиническое испытание КТ.

КТ позволяет изучить положение, форму, размеры и структуру различных органов, а также их соотношение с другими органами и тканями. Успехи, достигнутые с помощью КТ в диагностике различных заболеваний, послужили стимулом быстрого технического совершенствования аппаратов и значительного увеличения их моделей.

В основе КТ лежит регистрация рентгеновского излучения чувствительными дозиметрическими детекторами и создание рентгеновского изображения органов и тканей с помощью ЭВМ. Принцип метода заключается в том, что после прохождения лучей через тело пациента они попадают не на экран, а на детекторы, в которых возникают электрические импульсы, передающиеся после усиления в ЭВМ, где по специальному алгоритму они реконструируются и создают изображение объекта, изучаемое на мониторе (рис. 1.4).

Изображение органов и тканей на КТ, в отличие от традиционных рентгеновских снимков, получается в виде поперечных срезов (аксиальных сканов). На основе аксиальных сканов получают реконструкцию изображения в других плоскостях.

В практике рентгенологии в настоящее время используется, в основном, три типа компьютерных томографов: обычные шаговые, спиральные или винтовые, многосрезовые.

В обычных шаговых компьютерных томографах высокое напряжение к рентгеновской трубке подается по высоковольтным кабелям. Из-за этого трубка не может вращаться постоянно, а должна выполнять качающиеся движения: один оборот по часовой стрелке, остановка, один оборот против часовой стрелки, остановка и обратно. В результате каждого вращения получают одно изображение толщиной 1 – 10 мм за 1 – 5 сек. В промежутке между срезами стол томографа с пациентом передвигается на установленную дистанцию в 2 – 10 мм, и измерения повторяются. При толщине среза 1 – 2 мм шаговые аппараты позволяют выполнять исследование в режиме «высокого разрешения». Но эти аппараты обладают рядом недостатков. Продолжительность сканирования относительно большая, и на изображениях могут появляться артефакты от движения и дыхания. Реконструкция изображения в проекциях, отличных от аксиальных, трудновыполнима или просто невозможна. Серьезные ограничения имеются при выполнении динамического сканирования и исследований с контрастным усилением. Кроме того, могут быть не выявлены малоразмерные образования между срезами при неравномерном дыхании пациента.

В спиральных (винтовых) компьютерных томографах постоянное вращение трубки совмещено с одновременным перемещением стола пациента. Таким образом, при исследовании получают информацию сразу от всего исследуемого объема тканей (целиком голова, грудная клетка), а не от отдельных срезов. При спиральной КТ возможна трехмерная реконструкция изображения (3D-режим) с высоким пространственным разрешением, в том числе виртуальная эндоскопия, позволяющая визуализировать внутреннюю поверхность бронхов, желудка, толстой кишки, гортани, придаточных пазух носа. В отличие от эндоскопии при помощи волоконной оптики, сужение просвета исследуемого объекта не является препятствием для виртуальной эндоскопии. Но в условиях последней цвет слизистой оболочки отличается от естественного и невозможно выполнить биопсию (рис. 1.5).

В шаговых и спиральных томографах используют один или два ряда детекторов. Многосрезовые (мультидетекторные) компьютерные томографы снабжены 4, 8, 16, 32 и даже 128 рядами детекторов. В многосрезовых аппаратах значительно сокращается время сканирования и улучшается пространственная разрешающая способность в аксиальном направлении. На них можно получать информацию с использованием методики высокого разрешения. Значительно улучшается качество мультипланарных и объемных реконструкций. КТ обладает рядом преимуществ перед обычным рентгенологическим исследованием:



  1. Прежде всего, высокой чувствительностью, что позволяет дифференцировать отдельные органы и ткани друг от друга по плотности в пределах до 0,5%; на обычных рентгенограммах этот показатель составляет 10-20% .

  2. КТ позволяет получить изображение органов и патологических очагов только в плоскости исследуемого среза, что дает четкое изображение без наслоения лежащих выше и ниже образований.

  3. КТ дает возможность получить точную количественную информацию о размерах и плотности отдельных органов, тканей и патологических образований.

  4. КТ позволяет судить не только о состоянии изучаемого органа, но и о взаимоотношении патологического процесса с окружающими органами и тканями, например, инвазию опухоли в соседние органы, наличие других патологических изменений.

  5. КТ позволяет получить топограммы, т.е. продольное изображение исследуемой области наподобие рентгеновского снимка, путем смещения больного вдоль неподвижной трубки. Топограммы используются для установления протяженности патологического очага и определения количества срезов.

  6. При спиральной КТ в условиях трехмерной реконструкции можно выполнить виртуальную эндоскопию.

  7. КТ незаменима при планировании лучевой терапии (составление карт облучения и расчета доз).

Данные КТ могут быть использованы для диагностической пункции, которая может с успехом применяться не только для выявления патологических изменений, но и для оценки эффективности лечения и, в частности, противоопухолевой терапии, а также определения рецидивов и сопутствующих осложнений.

Диагностика с помощью КТ основана на прямых рентгенологических признаках, т.е. определении точной локализации, формы, размеров отдельных органов и патологического очага и, что особенно важно, на показателях плотности или абсорбции. Показатель абсорбции основан на степени поглощения или ослабления пучка рентгеновского излучения при прохождении через тело человека. Каждая ткань, в зависимости от плотности атомной массы, по-разному поглощает излучение, поэтому в настоящее время для каждой ткани и органа в норме разработан коэффициент абсорбции (КА), обозначаемый в единицах Хаунсфилда (HU). HUводы принимают за 0; кости, обладающие наибольшей плотностью – за +1000, воздух, имеющий наименьшую плотность, – за − 1000.

При КТ весь диапазон серой шкалы, в котором представлено изображение томограмм на экране видеомонитора, составляет от – 1024 (уровень черного цвета) до + 1024 HU (уровень белого цвета). Таким образом, при КТ «окно», то есть диапазон изменений HU (единиц Хаунсфилда) измеряется от – 1024 до + 1024 HU. Для визуального анализа информации в серой шкале необходимо ограничить «окно» шкалы соответственно изображению тканей с близкими показателями плотности. Последовательно изменяя величину «окна», можно изучить в оптимальных условиях визуализации разные по плотности участки объекта. Например, для оптимальной оценки легких уровень черного цвета выбирают, близко к средней плотности легких (между – 600 и – 900 HU). Под «окном» с шириной 800 с уровнем – 600 HU подразумевается, что плотности – 1000 HU видны как черные, а все плотности – 200 HU и свыше – как белые. Если то же изображение используется для оценки деталей костных структур грудной клетки, «окно» шириной 1000 и уровнем + 500 HU создаст полную серую шкалу в диапазоне между 0 и + 1000 HU. Изображение при КТ изучается на экране монитора, помещается в долговременную память компьютера или получается на твердом носителе − фотопленке. Светлые участки на компьютерной томограмме (при черно-белом изображении) называют «гиперденсивными», а темные − «гиподенсивными». Денсивность означает плотность исследуемой структуры (рис. 1.6).

Минимальная величина опухоли или другого патологического очага, определяемого с помощью КТ, колеблется от 0,5 до 1 см при условии, чтоHUпораженной ткани отличается от такового здоровой на 10 - 15 ед.

Недостатком КТ является увеличение лучевой нагрузки на пациентов. В настоящее время на КТ приходится 40% от коллективной дозы облучения, получаемой пациентами при рентгенодиагностических процедурах, тогда как КТ-исследование составляет лишь 4% от числа всех рентгенологических исследований.

Как в КТ, так и при рентгенологических исследованиях возникает необходимость применения для увеличения разрешающей способности методики “усиления изображения”. Контрастирование при КТ производится с водорастворимыми рентгеноконтрастными средствами.

Методика “усиления“ осуществляется перфузионным или инфузионным введением контрастного вещества.


Скачать 69.32 Kb.

Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9   ...   13




©zodomed.ru 2025


    Главная страница