Основы лучевой терапии



страница1/4
Дата14.09.2017
Размер0.57 Mb.
ТипУчебное пособие
  1   2   3   4

Министерство образования Российской Федерации

Петрозаводский государственный университет

С. Н. Кондричина,

А. Т. Балашов




ОСНОВЫ ЛУЧЕВОЙ ТЕРАПИИ

Учебное пособие

Петрозаводск

2001


ББК 53.6.

К 642

УДК 615.849.1

Рецензенты:



кандидат мед. наук А. А. Мясников,

С. Е. Нильва

Печатается по решению
редакционно-издательского совета
Петрозаводского государственного университета


Кондричина С. Н., Балашов А. Т.

К 642 Основы лучевой терапии: Учебное пособие

/ ПетрГУ. Петрозаводск, 2001. 44 с.

В учебном пособии изложены основы применения лучевой терапии при различных заболеваниях, приведены сведения по дозиметрии ионизирующих излучений, описаны источники, их свойства и характеристики. Рассматриваются радиобиологические основы лучевой терапии, лучевые реакции и повреждения. Представлены показания и противопоказания к лучевой терапии злокачественных опухолей и неопухолевых заболеваний.

Предназначено для студентов III-VI курсов, врачей-интернов, онкологов.

ББК 53.6

УДК 615.849.1

© С. Н. Кондричина, А. Т. Балашов, 2001

© Петрозаводский государственный

университет, 2001



ВВЕДЕНИЕ

Лучевая терапия является одним из ведущих методов лечения больных со злокачественными новообразованиями, некоторыми системными и неопухолевыми заболеваниями. Как самостоятельный метод или в сочетании с хирургическим или с химиотерапией лучевая терапия показана и эффективна более чем у 75% больных со злокачественными опухолями.

Впервые рентгеновское излучение было применено для лечения злокачественных новообразований кожи вскоре после открытия его Рентгеном в 1895 г. В самом начале ХХ века некоторые крупные лечебные учреждения уже работали с рентгеновскими установками, специально созданными для облучения. Однако примитивная дозиметрия приводила к сильному разбросу результатов вплоть до 1928 г., когда Второй Международный конгресс радиологов ввел единицу экспозиционной дозы рентген. Это положило начало научному развитию использования ионизирующих излучений в диагностике и терапии. В последующие десятилетия использование излучения для облучения возросло благодаря разработкам более сложной аппаратуры. В последние годы появился широкий ассортимент оборудования для лучевой терапии, в том числе -терапевтические аппараты и генераторы тормозного излучения с энергиями от 50 кэВ до нескольких миллионов электрон-вольт, дающие пучки быстрых электронов и высокоэнергетических фотонов. При правильном выборе различных видов излучения к опухоли удается подвести более высокую дозу облучения, чем это удавалось прежде, и в то же время значительно снизить дозу излучения в окружающих опухоль тканях.

Широкие показания к лучевой терапии объясняются возможностью применения ее как при операбельных, так и при неоперабельных формах опухоли, а также неуклонно возрастающей эффективностью различных методов лучевой терапии. Успех лучевой терапии связан с развитием техники, с появлением новых конструкций аппаратов (источников излучения), с развитием клинической дозиметрии, с многочисленными радиобиологическими исследованиями, раскрывающими механизм регрессии опухоли под влиянием облучения.

В настоящем учебном пособии кратко освещены физические основы, современные методы лучевой терапии, особенности ведения больных на различных этапах лучевого лечения.

I. ФИЗИЧЕСКИЕ ОСНОВЫ ЛУЧЕВОЙ ТЕРАПИИ (ЛТ)

Виды и свойства ионизирующих излучений

Ядра атомов естественных и искусственных радиоактивных элементов в отличие от стабильных нерадиоактивных


находятся в состоянии неустойчивого равновесия. Такие ядра
неизбежно претерпевают структурную перестройку. Распад
радиоактивных изотопов сопровождается испусканием из ядра элементарных частиц (электроны, позитроны, -частицы) и превращением в другое радиоактивное или стабильное вещество. При выходе из ядра элементарных частиц испускается квант электромагнитного -излучения.

Скорость распада ядер зависит от их строения и поэтому не может быть изменена. Средняя продолжительность, в течение которой атомы существуют до распада, является строго определенной величиной. Интенсивность распада в каждый данный


момент пропорциональна числу атомов данного радиоактивного вещества; по мере уменьшения числа неустойчивых атомов
интенсивность распада уменьшается. Время, в течение которого распадаются все неустойчивые атомы, называется периодом
распада. Для каждого изотопа этот период строго определенный. Обычно при характеристике изотопа указывается время полураспада, в течение которого распадается половина радиоактивного вещества. Элементарные частицы и -кванты, испускаемые при распаде радиоактивных элементов, представляют собой излучения, которые применяются с лечебной целью.



Ионизирующими называют излучения, которые при взаимодействии со средой, в том числе с тканями живого организма, превращают нейтральные атомы в ионы (частицы, несущие отрицательный или положительный электрический заряд).

Ионизирующие излучения (ИИ) подразделяются на


корпускулярные и фотонные (квантовые). К корпускулярным
излучениям относятся потоки заряженных частиц - электронов, позитронов, протонов, нейтронов, дейтронов, -частиц, -мезонов. Фотонные излучения - это потоки квантов, не имеющих заряда, энергия которых определяется их частотой или длиной волны.
Фотонные ИИ включают -излучение радиоактивных изотопов,
характеристическое и тормозное излучения, генерируемые ускорителями электронов.

Механизмы взаимодействия фотонных и корпускулярных излучений с веществом неодинаковы, но итог взаимодействия сходен - ионизация среды распространения.

Для характеристики взаимодействия различных видов ИИ используются три основных параметра:


  • Линейная плотность ионизации (ЛПИ) - среднее количество пар ионов, образованных заряженной частицей, на единицу длины пробега. ЛПИ характеризует ионизирующую способность излучения.

  • Линейная передача энергии (ЛПЭ) - средняя энергия, переданная частицей веществу на единицу длины пробега частицы.

  • Средняя длина свободного пробега. В результате взаимодействия ИИ с веществом энергия ионизирующих частиц уменьшается до тех пор, пока она не станет соизмеримой с энергией теплового движения молекул. Путь, который проходят при этом частицы, характеризуется средней длиной свободного пробега в данном веществе.

Корпускулярные ионизирующие излучения

Положительно заряженные частицы

-излучение представляет собой поток ядер гелия, несущих два положительных заряда. Так как масса -частиц значительна по сравнению с массой электронов атомов, с которыми они соударяются, то траектория -частиц прямолинейна. Вследствие большого заряда и малой скорости -частицы весьма интенсивно взаимодействуют с электронами поглощающего материала; быстро расходуя свою энергию, они успевают пройти очень малое расстояние. В тканях человека -частицы поглощаются на глубине 50 мкм, в воздухе их пробег равен 7-12 см. Это определяет относительно малую радиационную опасность -частиц при наружном облучении.

Протонные пучки. Как и -частицы, характеризуются наибольшими массой и зарядом по сравнению с другими видами ИИ. Их траектории также прямолинейны.

ЛПИ, создаваемая положительно заряженными частицами, неравномерна вдоль трека частицы, образует в конце пробега так называемый "пик Брегга", т. е. тяжелые частицы в конце пути дают ЛПИ, в сотни раз превышающую ЛПИ в начале пути (рис. 1). Это объясняется тем, что, замедляясь, тяжелые частицы взаимодействуют с веществом со значительно большей вероятностью. Положение пика Брегга зависит от энергии частиц - чем больше энергия, тем больше глубина его локализации.


ЛПИ

Пик Брегга


см (глубина)

8-10


Рис. 1. Протоны с энергией 160-180 МэВ

Наличие пика Брегга и возможность управления его локализацией на глубине создают благоприятные условия для лучевой терапии протонными пучками высоких энергий. В настоящее время существуют различные устройства, с помощью которых из плазменного шнура, горящего в водородной атмосфере, извлекаются свободные от электронов ядра водорода - протоны. Они ускоряются в циклических ускорителях, приобретая требуемую энергию.

Основными преимуществами использования протонных пучков в лучевой терапии являются формирование не расходящихся пучков и возможность подведения необходимого количества энергии на заданную глубину, соответствующую пику Брегга. При этом ткани, расположенные за пределами пучка, практически не повреждаются. Участок пика Брегга для протонов невелик, но можно использовать пучок с различными энергиями и таким образом разрушить весь очаг поражения.

Отрицательно заряженные частицы

-излучение представляет собой поток электронов и позитронов, возникающий в результате внутриядерных превращений нейтронов и протонов.

В отличие от -частиц -частицы характеризуются непрерывным энергетическим спектром. Путь электрона в веществе извилист, поскольку он обладает малой массой и легко изменяет направление вследствие соударения с электронами атомов. Поэтому начальный пучок электронов в тканях имеет тенденцию к расхождению (рассеяние электронов). При торможении быстрых электронов в поле ядра атомов возникает тормозное фотонное излучение.

Вследствие большой скорости проникающая способность -частиц выше, чем у -частиц. В воздухе она составляет около
10 м, в мышечных тканях - 10 мм. -активные препараты используются при лечении злокачественных опухолей, локализация которых позволяет обеспечить непосредственный контакт с этими препаратами. Реже они используются с целью диагностики.

С помощью современных ускорителей создаются электронные пучки высоких энергий (до 15-50 МэВ), обладающие большой проникающей способностью. Средняя длина свободного пробега таких электронов может достигать в тканях человеческого организма 10-20 см. Электронный пучок, поглощаясь в тканях, создает дозное поле, отличающее этот вид излучения от других. Максимум ионизации при этом образуется вблизи поверхности тела. Размеры зоны максимума ионизации находятся в прямой зависимости от величины энергии излучения. За пределами максимума происходит довольно быстрый спад дозы.

Электронный пучок с энергией до 5 МэВ используется при лечении поверхностных злокачественных новообразований, с энергией от 20 до 50 МэВ - более глубоко расположенных. Современные ускорители дают возможность плавно регулировать энергию пучка электронов и тем самым создавать требуемую дозу на любой глубине.

-мезоны - бесспиновые элементарные частицы с массой, величина которой занимает промежуточное место между массами электрона и протона.

Отрицательные -мезоны при "входе" в вещество в начале пути ведут себя подобно протонам, затем основная часть мезонов останавливается на определенной глубине и со 100%-й вероятностью захватывается атомами (кислородом и азотом тканей), а затем поглощается их ядрами. При этом в ядро вносится очень большая энергия (больше 100 МэВ), в результате чего ядро сильно возбуждается и распадается с испусканием нейтронов, протонов, дейтронов и -частиц, которые и вызывают сильную ионизацию вещества.



Таким образом, все заряженные частицы в результате их электростатического взаимодействия с электронами облучаемого вещества приводят к непосредственной прямой ионизации его атомов и молекул. Это взаимодействие тем эффективнее, чем выше порядковый номер вещества-поглотителя. Поэтому защитные устройства, экранирующие взаимодействие ИИ на биологические объекты, выполняются из веществ с высоким атомным номером.

Нейтронные излучения

Процессы взаимодействия нейтронов с веществом определяются как энергией нейтронов, так и атомным составом поглощающей среды. Отсутствие у нейтронов электрического заряда позволяет ему проникать через электронные оболочки атомов и свободно приближаться к ядру.

Источники нейтронов:


  1. бомбардировка дейтерия;

  2. смеси -излучателей с бериллием или бором:

Не + Ве = 13С 12С + n.

При воздействии на ткани нейтроны захватываются ядрами атомов, что приводит к нарушению их структуры и сопровождается испусканием - или -частиц и -квантов. Кроме того, при ядерных превращениях освобождаются ядра отдачи, которые обладают большой энергией, производят высокую ионизацию среды. Их ионизирующая способность близка к ионизирующей способности -частиц. Однако поражающее действие нейтронов значительно выше вследствие их большой проникающей способности. При облучении нейтронами в клетке возникает одномоментный разрыв ДНК, что приводит к ее гибели. Так как гибнут не только опухолевые, но и здоровые клетки, для нейтронов характерен высокий процент лучевых повреждений. Из всех видов ИИ быстрые нейтроны обладают наибольшей радиационной опасностью. Быстрые нейтроны лучше замедляются на ядрах легких элементов (вода, парафин, жировая ткань). Следовательно, поглощенная доза оказывается большей в жировой ткани, что приводит к лучевым повреждениям.

Высокая проникающая способность открывает перспективы для использования нейтронов в лучевой терапии злокачественных новообразований.

При решении вопросов защиты от нейтронного излучения необходимо учитывать специфику его взаимодействия с веществом. Для быстрых нейтронов необходимо их замедлить. Для этого используются легкие ядра (вода, парафин). Медленные нейтроны затем поглощаются в результате радиационного захвата в материалах, изготовленных из бора или кадмия. Поскольку процесс захвата сопровождается излучением -кванта, необходимо использовать в качестве защитного материала свинец. Таким образом, защита от нейтронов является сложной конструкцией.



Нейтронозахватывающая терапия. Впервые метод предложен Locher в 1936 г. При этом методе используется поток медленных нейтронов, получаемых от ядерных реакторов. Для дифференцированного облучения с максимальным эффектом в опухоли и минимальным в нормальных тканях необходимо насыщение опухоли элементами, характеризующимися большим поперечным сечением захвата медленных нейтронов. Такими элементами являются бор (10В) и литий (6Li). Однако туморотропностью эти элементы не обладают. Для обогащения ими опухоли использована различная скорость диффузии их из кровеносной системы в ткани (т. е. эти элементы медленно переходят из крови в головной мозг, а в опухолевую ткань поступают значительно быстрее). Установлено, что через 30 минут после внутривенного введения соединений бора его концентрация в опухоли мозга в 4-5 раз выше, чем в нормальной ткани. И именно в это время должно проводиться облучение. Концентрация бора и лития в мышечной ткани очень велика, и поэтому нейтронозахватывающую терапию нельзя применять при опухолях туловища и конечностей. Этот метод применим только при опухолях мозга.

Фотонные ионизирующие излучения

К фотонным ИИ относятся -излучение радиоактивных веществ, характеристическое и тормозное излучения, генерируемые различными ускорителями. ЛПИ фотонного излучения самая низкая (1-2 пары ионов на 1 см3 воздуха), что определяет его высокую проникающую способность (в воздухе длина пробега составляет несколько сот метров).



-излучение возникает при радиоактивном распаде. Переход ядра из возбужденного в основное состояние сопровождается излучением -кванта с энергиями от 10 кэВ до 5 МэВ. Основными терапевтическими источниками -излучения являются
-аппараты (пушки).

Тормозное рентгеновское излучение возникает за счет ускорения и резкого торможения электронов в вакуумных системах различных ускорителей и отличается от рентгеновского большей энергией квантов (от одного до десятков МэВ).

При прохождении потока фотонов через вещество происходит его ослабление в результате следующих процессов взаимодействия (тип взаимодействия фотонов с атомами вещества зависит от энергии фотонов):



  • Классическое (когерентное, или томпсоновское, рассеяние) - для фотонов с энергией от 10 до 50-100 кэВ. Относительная частота этого эффекта мала. Происходит взаимодействие, которое существенной роли не играет, так как падающий квант, столкнувшись с электроном, отклоняется, и его энергия не меняется.

  • Фотоэлектрическое поглощение (фотоэффект) - при относительно малых энергиях - от 50 до 300 кэВ (играет существенную роль при рентгенотерапии). Падающий квант выбивает орбитальный электрон из атома, сам при этом поглощается, а электрон, немного изменив направление, улетает. Этот улетевший электрон называется фотоэлектроном. Таким образом, энергия фотона тратится на работу выхода электрона и на придание ему кинетической энергии.

  • Эффект Комптона (некогерентное рассеяние) - возникает при энергии фотона от 120 кэВ до 20 МэВ (т. е. практически весь спектр лучевой терапии). Падающий квант выбивает электрон с наружной оболочки атома, передавая ему часть энергии, и меняет свое направление. Электрон вылетает из атома под определенным углом, а новый квант отличается от первоначального не только иным направлением движения, но и меньшей энергией. Образовавшийся квант будет косвенно ионизировать среду, а электрон - прямо.

  • Процесс образования электронно-позитронных пар - энергия кванта должна быть больше 1,02 МэВ (удвоенной энергии покоя электрона). С этим механизмом приходится считаться при облучении больного пучком тормозного излучения высокой энергии, т. е. на высокоэнергетических линейных ускорителях. Вблизи ядра атома падающий квант испытывает ускорение и исчезает, преобразовываясь в электрон и позитрон. Позитрон быстро объединяется со встречным электроном, и происходит процесс аннигиляции (взаимного уничтожения), а взамен возникают два фотона, энергия каждого из которых вдвое меньше энергии исходного фотона. Таким образом, энергия первичного кванта переходит в кинетическую энергию электрона и в энергию аннигиляционного излучения.

  • Фотоядерное поглощение - энергия квантов должна быть больше 2,5 МэВ. Фотон поглощается ядром атома, в результате чего ядро переходит в возбужденное состояние и может либо отдать электрон, либо развалиться. Таким образом получаются нейтроны.

В результате вышеперечисленных процессов взаимодействия фотонного излучения с веществом возникает вторичное фотонное и корпускулярное излучение (электроны и позитроны). Ионизационная способность частиц значительно больше, чем фотонного излучения.

Пространственное ослабление пучка фотонов происходит по экспоненциальному закону (закону обратных квадратов): интенсивность излучения обратно пропорциональна квадрату расстояния до источника излучения.

Излучение в диапазоне с энергией от 200 кэВ до 15 МэВ нашло самое широкое применение в терапии злокачественных новообразований. Большая проникающая способность позволяет передавать энергию глубоко расположенным опухолям. При этом резко снижается лучевая нагрузка на кожу и подкожную клетчатку, что позволяет подвести требуемую дозу к очагу поражения без лучевого повреждения указанных участков тела (в отличие от мягкого рентгеновского излучения). С увеличением энергии фотонов больше 15 МэВ увеличивается риск лучевого поражения тканей на выходе из пучка.

II. ДОЗИМЕТРИЯ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

Основные радиационные величины и их единицы

Обязательным условием радиационной безопасности при лучевой терапии является точный количественный учет энергии излучения, поглощенной персоналом и больными, подвергающимися облучению.

Для количественной характеристики ИИ пользуются понятием "доза". Доза ИИ - это отношение энергии излучения к массе или объему облучаемого вещества. В клинической дозиметрии пользуются следующими понятиями:


  • Активность радиоактивного вещества - характеристика количества радиоактивного вещества (количество распадов в единицу времени). Системной единицей активности является Беккерель (Бк) - активность радиоактивного источника, в котором в 1 секунду происходит 1 распад (1 Бк = 1 расп./с). Внесистемная единица - Кюри (Ки) - активность радиоактивного источника, в котором в 1 секунду происходит 3,7 1010 распадов.

Таблица 1

Основные радиационные величины и их единицы

Физическая величина

Единица, ее наименование,
обозначение (междунар., русское)


Соотношение

между единицами

внесистемная

СИ

Активность нуклида в р/а источнике

Кюри (Ci, Ки)

Беккерель

(Bq, Бк)


1 Бк = 2,710-11 Ки

1 Ки = 3,71010 Бк



Экспозиционная доза излучения

Рентген (R, Р)

Кулон на кг (C/kg, Кл/кг)

1 К/кг = 3876 Р

1 Р=2,58104 Кл/кг



Мощность
экспозиционной дозы


Рентген в се-кунду (R/s, Р/с)

Ампер на кг (A/Kg, А/кг)

1 А/кг = 3876 Р/с

1 Р/с =2,5810-4 А/кг



Поглощенная доза излучения

Рад (rad, рад)

Грей (Gy, Гр)

1 Гр = 100 рад

1 рад = 0,01 Гр



Мощность
поглощенной дозы


Рад в секунду (rad/s, рад/с)

Грей в секунду (Gy/s, Гр/с)

1 Гр/с = 100 рад/с

1 рад/с = 0,01 Гр/с



Интегральная доза излучения

радграмм (radg, радг)

Джоуль (J, Дж)

1 Дж = 105 радг

1 радг = 10-5 Дж



Эквивалентная доза излучения

Бэр (rem, бэр)

Зиверт (Sv, Зв)

1 Зв = 100 бэр

1 бэр = 0,01 Зв



Мощность
эквивалентной дозы


Бэр в секунду (rem/s, бэр/с)

Зиверт в секун-ду (Sv/s, Зв/с)

1 Зв/с = 100 бэр/с

1 бэр/с = 0,01 Зв/с



Поскольку 1 Гр, по определению, есть 1 Джоуль на килограмм, единица СИ интегральной дозы грейкилограмм преобразуется в Джоуль

(1 Гркг = 1 (Дж/кг)кг = 1 Дж).



  • Экспозиционная доза излучения - доза излучения, которая измеряется в сухом (свободном) воздухе при отсутствии рассеивающих тел. Она характеризует главным образом источник излучения (его мощность, постоянство параметров и др.). Экспозиционная доза применяется только для ионизирующего излучения с энергией не больше 3 МэкВ. Внесистемной единицей экспозиционной дозы является Рентген - это доза рентгеновского или
    -излучения, которая при нормальных условиях (0
    0С и давлении 1 атмосфера) в 1 см3 воздуха образует заряд, равный 1 э. с. е. статического электричества (2,08 х 109 пар ионов каждого знака). Единицей измерения экспозиционной дозы в СИ является кулон на кг - это доза рентгеновского или -излучения, при которой в 1 кг воздуха при нормальных условиях образуется заряд, равный 1 кулону.

Одну и ту же дозу можно подвести в разные промежутки времени. Поэтому вводится понятие мощности дозы - доза, рассчитанная на единицу времени. Биологическое действие ионизирующих излучений зависит и от дозы и от ее мощности.

  • Поглощенная доза излучения - основной количественный показатель воздействия ионизирующих излучений на облучаемые ткани. Она определяется количеством энергии, переданной в процессе облучения единице массы облучаемого вещества. Поглощенная доза применяется для любого вида ионизирующего излучения. В СИ единица поглощенной дозы - Дж/кг. Эта величина получила название "Грей" (Гр). 1 Гр - это доза ионизирующего излучения, при которой в 1 кг облученного вещества поглотится энергия, равная 1 Дж. Внесистемная единица поглощенной дозы - рад. 1 рад - это доза излучения, при которой в 1 г облученного вещества поглотится энергия, равная 100 эргам.

  • Интегральная доза излучения - количество энергии, поглощенной в облучаемом объеме.

  • В связи с тем что при облучении биологических объектов различные виды ионизирующих излучений при одной и той же поглощенной дозе оказывают различное биологическое действие, существует понятие "эквивалентная доза излучения". Биологические эффекты, вызываемые конкретным видом излучения, сравнивают с эффектом, который производит фотонное излучение с энергией 200 кэВ.

Коэффициент, показывающий, во сколько раз радиационная опасность в случае хронического облучения человека (в малых дозах) для данного вида излучения выше, чем в случае фотонного излучения (200 кэВ при равной поглощенной дозе), называется коэффициентом качества (КК). КК для фотонного излучения 200 кэВ = 1. Для α-частиц КК = 20, для протонов и быстрых нейтронов КК = 10, для тепловых нейтронов КК = 2,5-3. Величина КК зависит от ЛПЭ данного вида излучения. Чем выше ЛПЭ, тем больше поражаемость клеток и ниже способность к восстановлению. Таким образом, при одинаковой поглощенной дозе повреждающий (или лечебный) эффект при облучении протонами будет в 10 раз больше, чем при фотонном излучении.

Доза, полученная живым объектом с учетом КК данного излучения, называется эквивалентной дозой. Эквивалентная доза учитывает поглощенную дозу и биологический эффект ИИ. Понятие "эквивалентная доза" используется только для оценки радиационной опасности. Внесистемной единицей эквивалентной дозы является БЭР - это доза какого-либо вида ИИ, биологически эффективная 1 Рентгену рентгеновского излучения, генерируемого напряжением 200 кВ.

В настоящее время рекомендуется во всех случаях пользоваться физическими величинами, выраженными в единицах СИ. Однако в медицинской радиотерапевтической технике долгое время применяли внесистемные единицы, что широко отражено в соответствующей литературе, инструкциях, шкалах приборов (в т. ч. дозиметрах). Поэтому необходимо знание соотношений между внесистемными единицами и единицами СИ (табл. 1).




Поделитесь с Вашими друзьями:
  1   2   3   4




©zodomed.ru 2024


    Главная страница