Проект на тему
«СОРАЗМЕРНОСТЬ
или
ВНОВЬ О ЗОЛОТОМ СЕЧЕНИИ»
Ученицы МОУСОШ №2:
Лошкарева Ульяна,
Гатауллина Эльвира
Руководитель: Гатауллина Фаузия Габдрауфовна, учитель математики МОУСОШ №2
Геометрия владеет двумя сокровищами:
одно из них – теорема Пифагора, другое-
деление отрезка в среднем и крайнем отношении.
И. Кеплер
1.Литературный обзор
1.1.Золотое сечение и числа Фибоначчи
Отрезок можно разделить на две части бесконечным множеством способов. В частности, можно разделить так, чтобы отношение всего отрезка к его большей части, равнялось отношению большей части к меньшей.
Пусть длина некоторого отрезка равна а, длина его большей части равна х, тогда а - х - длина меньшей части отрезка. Составим отношение согласно приведенному выше определению: а/х =х/(а - х) такое деление отрезка и называется со времен древних греков делением отрезка в крайнем и среднем отношении.
В пропорции, как известно произведение крайних членов равно произведение средних, поэтому от пропорции а/х = х/(а-х) перейдем к равенству а(а - х) = х. Отсюда получаем квадратное уравнение х+ ах - а= 0.Длина отрезка х выражается положительным числом, поэтому из двух корней следует выбрать положительный: х = (-а +)/2,или х = ( - 1/2) ∙ 2. Число обозначается буквой в честь древнегреческого скульптора Фидия, в творениях которого это число встречается многократно. Число иррациональное, с восьмью десятичными знаками, .61803398… Но в практике пользуются числом , взятым с точностью или до тысячных 0.618, или до сотых 0.61, или до десятых 0.6.
Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему (рис.1).
a : b = b : c или с : b = b : а.
Поделитесь с Вашими друзьями: |