ВЕЙВЛЕТНЫЕ ПРЕОБРАЗОВАНИЯ СИГНАЛОВ
Тема 24. СВОЙСТВА ВЕЙВЛЕТ-преобразования
Изложение вопроса будет неполным, пока в той или иной форме мы не оговорим всех условий.
Джон Стюарт Милль. Английский философ, XIX в.
Оговорить можно, но увлекаться не стоит. Можно такой забор нагородить, что за ним и смысл самого вопроса не рассмотришь.
Игорь Широков. Московский геофизик Уральской школы, XX в.
Содержание
Введение.
1. Базисные функции вейвлет-преобразования. Определение вейвлета. Свойства вейвлета. Отображение преобразования. Вейвлетные функции.
2. Свойства вейвлет-преобразования.
3. Вейвлет-преобразование простых сигналов.
Введение.
Аналитика вейвлетных преобразований сигналов определяются математической базой разложения сигналов, которая аналогична преобразованиям Фурье. Основной отличительной особенностью вейвлет-преобразований является новый базис разложения сигналов - вейвлетные функции. Свойства вейвлетов принципиально важны как для самой возможности разложения сигналов по единичным вейвлетным функциям, так и для целенаправленных действий над вейвлетными спектрами сигналов, в том числе с последующей реконструкцией сигналов по обработанным вейвлетным спектрам.
Вейвлеты могут быть ортогональными, полуортогональными, биортогональными. Вейвлетные функции могут быть симметричными, асимметричными и несимметричными, с компактной областью определения и не имеющие таковой, а также иметь различную степень гладкости. Некоторые функции имеют аналитическое выражение, другие – быстрый алгоритм вычисления вейвлет-преобразования. Для практики желательно было бы иметь ортогональные симметричные и асимметричные вейвлеты, но таких идеальных вейвлетов не существует. Наибольшее применение находят биортогональные вейвлеты.
Поделитесь с Вашими друзьями: |