№1 Известно, что ионные каналы мембраны возбудимой клетки регулируют амплитуду мембранных потенциалов



страница1/40
Дата08.04.2020
Размер0.65 Mb.
  1   2   3   4   5   6   7   8   9   ...   40

1 Известно, что ионные каналы мембраны возбудимой клетки регули­руют амплитуду мембранных потенциалов. Экспериментально обнару­жено, что яд тетродотоксин блокирует натриевые каналы мембраны возбудимой клетки.

Вопросы: 1. Как изменится при этом потенциал покоя возбудимости клетки? 2. Как изменится при этом потенциал действия возбудимой клет­ки? 3. Как при этом изменится распределение ионов на внешней и вну­тренней стороне клеточной мембраны? 4. Повлияет ли тетродотоксии на проведение возбуждения по нервному волокну?
1. Известно, что потенциал покоя создается преимущественно за счет выхода ионов калия по концентрированному градиенту из клетки. При этом натриевые каналы частично открыты, и не­которое количество ионов натрия проходит в клетку, уменьшая потенциал покоя. Следовательно, блокада натриевых каналов тетродотоксином приведет к небольшому увеличению потенциа­ла покоя.

2. При блокаде натриевых каналов становится невозможным воз­никновение потенциала действия, так как деполяризация кле­точной мембраны невозможна.

3. Концентрация ионов натрия на внешней стороне клеточной мембраны незначительно увеличится, так как ионы натрия пол­ностью перестают входить в клетку.

4. Поскольку проницаемость натриевых каналов увеличивается при возникновении потенциала действия, их блокада тетродоксином приведёт к невозможности распространения возбуждения по нервному волокну.



2 Известно, что фазы потенциала действия нервного волокна (быстрая деполяризация и реполяризация) возникают вследствие движения ионов натрия и калия вдоль концентрационных градиентов. В эксперименте на нерв подействовали уабаином — веществом, подавляющим активность АТФазы, затем провели длительное ритмическое раздражение нерва.

Вопросы: 1. Как при этом изменится распределение ионов на внешней и вну­тренней стороне клеточной мембраны? 2. Изменится ли величина потенциала покоя и потенциала дей­ствия в обработанном уабаином нервном волокне?
1. Потенциал покоя и потенциал действия возбудимых клеток об­условлены разной концентрацией ионов, в первую очередь, ка­лия и натрия, снаружи и внутри клетки. Разность концентраций ионов поддерживается благодаря калиево-натриевому насосу, работа, которая является энергозависимой и требует АТФазной активности. Следовательно, ингибирование АТФазы приведет к выравниванию концентраций калия и натрия снаружи и внутри нервных волокон в ходе ритмического раздражения нерва.

2. Отсутствие градиента концентрации ионов снаружи и внутри клетки приведет к исчезновению потенциала покоя и полной невозможности возникновения потенциала действия.



3 Известно, что градиент концентрации натрия между двумя сторонами клеточной мембраны влияет на величину потенциалов покоя и действия возбудимой клетки. В эксперименте увеличили концентрацию ионов натрия внутри нервной клетки вначале весьма незначительно, затем выровняли концентрацию ионов натрия внутри клетки и в окружающей клетку среде.

Вопрос: Как изменится величина потенциалов покоя и действия в двух описанных ситуациях?
1. Небольшое увеличение концентрации положительно заряженных ионов натрия внутри клетки уменьшит разность потенциалов снаружи и внутри клетки, что вызовет небольшую деполяризацию. Разность потенциалов приблизится к критическому уровню деполяризации, следовательно, возбудимость повысится, и потенциалы действия будут возникать легче.

2. При выравнивании концентрации ионов натрия внутри клетки и снаружи клетки потенциал действия не сможет возникнуть, поскольку натрий не сможет входить в клетку в условиях отсутствия градиента концентрации.









4 Известно, что препарат этилендиаминтетраамоний (ЭДТА) свя­зывает в живых тканях ионы кальция. В экспериментальных условиях на нервно-мышечном препарате лягушки в область нервно-мышечного синапса ввели ЭДТА.

Вопросы: 1. Как изменится процесс проведения возбуждения в синапсе? 2. Как повлияет ЭДТА на синтез ацетилхолина, проницаемость пресинаптической мембраны для медиатора, генерацию постсинаптического потенциала и активность холинэстеразы?
При распространении возбуждения нервного волокна в пресинаптическую область увеличивается проницаемость пресинаптической мембраны и ионы кальция входят по градиенту концентра­ции внутрь волокна. Связываясь с пресинаптическими везикулами, кальций обеспечивает движение везикул в сторону пресинаптической мембраны, что необходимо для высвобождения медиатора в синаптическую щель.

1. Связывание ионов кальция ЭДТА приведет к прекращению вы­свобождения ацетилхолина в нервно-мышечном синапсе и бло­каде проведения через синапс.

2. ЭДТА не повлияет непосредственно на синтез ацетилхолина, проницаемость пресинаптической мембраны для медиатора, ге­нерацию постсинаптического потенциала и активность холинэстеразы.


5 Известно, что проведение возбуждения в синапсе состоит из не­скольких стадий. В эксперименте воздействие химического вещества на нервно-мышечные синапсы привело к прекращению передачи возбуждения с нерва на скелетную мышцу. При введении в указанную область ацетил­холина проведение возбуждения через синапс не восстановилось. Введение фермента ацетилхолинэстеразы восстановило проведение возбуждения.

Вопросы: 1. Перечислите возможные механизмы прекращения проведения возбуждения в синапсе? 2. Каков механизм действия изучаемого вещества на нервно-мы­шечный синапс?
1. Возможными причинами прекращения перехода возбуждения с нерва на мышцу в синапсе могут быть: нарушение выделения медиатора ацетилхолина пресинаптической областью; инакти­вация или блокада холинэргических рецепторов постсинаптической мембраны; ингибирование фермента, разрушающего ацетилхолин.

2. При добавлении ацетилхолина нервно-мышечная передача не восстановилась, следовательно, дело не в недостаточном выделе­нии медиатора. Добавление фермента холинэстеразы, расщепля­ющего ацетилхолин и освобождающего рецепторы постсинаптической мембраны для взаимодействия со следующими квантами медиатора, восстановило синаптическую передачу. Следователь­но, изучаемое вещество является ингибитором холинэстеразы.



6 Известно, что гладкие мышцы имеют ряд физиологических осо­бенностей по сравнению со свойствами скелетных мышц. В ходе экс­перимента из стенки кишечника и стенки артерии мышечного типа животного было выделено по фрагменту (длиной 2 см и шириной 2 см), содержащему гладкомышечные волокна. Третий фрагмент такого же размера был выделен из скелетной мышцы. Внешне мало отличающиеся друг от друга мышечные фрагменты поместили в камеру с физиоло­гическим раствором, что обеспечивало условия для их жизнедеятель­ности в течение некоторого времени.

Вопросы: 1. Как различить принадлежность фрагментов мышечной ткани по их функциональным свойствам? 2. По какому функциональному признаку, без применения воз­действий, можно идентифицировать принадлежность одного из фрагментов к мышечной ткани кишечника? 3. Как с помощью раздражения фрагментов мышечной ткани мож­но отличить мышечную ткань внутренних органов от скелетной мышцы?
1. При наличии морфологического сходства между тремя фраг­ментами мышечной ткани, фрагменты гладкомышечной ткани отличаются автоматизмом, т.е. способностью к спонтанной ге­нерации потенциалов действия и к сокращению.

2. Автоматия хорошо выражена у гладких мышц стенок полых орга­нов, в частности, кишечника, и нехарактерна для гладких мышц стенок кровеносных сосудов.

3. Гладкие мышцы в отличие от скелетных мышц обладают высокой чувствительностью к биологически активным веществам. Подве­дение раствора ацетилхолина вызовет ритмические сокращения мышечного фрагмента кишечника. Раствор адреналина вызовет спастическое сокращение фрагмента скелетной мышцы. Сокра­щение фрагмента скелетной мышцы можно вызвать электриче­ским раздражением.








7 Известно, что одним из основных свойств возбудимых тканей явля­ется возбудимость. Экспериментально сравнивали возбудимость нерв­ной и мышечной ткани до и после длительного прямого и непрямого раз­дражения мышцы. Было установлено, что исходно возбудимость одной ткани выше, чем второй. Кроме того, было зафиксировано изменение возбудимости нерва и мышцы после длительного раздражения.

Вопросы: 1. Как определялась возбудимость нерва и мышцы? 2. Какая ткань и почему имела большую возбудимость? 3. Как изменилась возбудимость нерва и мышцы после длительного прямого и непрямого раздражения мышцы? 4. Какие параметры характеризуют величину возбудимости ткани?
1. На нервно-мышечном препарате лягушки сначала раздражали нерв и затем мышцу одиночными электрическими импульсами. Силу раздражения постепенно увеличивали до появления перво­го мышечного сокращения. Таким образом, определяли порог раздражения нерва и мышцы.

2. Нервная ткань имела большую возбудимость, так как ее порог раздражения был ниже по сравнению с мышечной тканью.

3. Возбудимость понизится вследствие уменьшения соотношения ионов на клеточной мембране при длительном раздражении не­рва и мышцы.

4. Величина возбудимости ткани характеризуется порогом раздра­жения, реобазой, хронаксией, скоростью аккомодации.



8 Известно, что возбудимость является одним из основных свойств нервной и мышечной тканей. Экспериментально было установлено, что после нанесения на изолированный нерв и полоску миокарда надпорогового раздражения возникали потенциалы действия, в ходе которых происходило изменение возбудимости.

Вопросы: 1. Какой метод регистрации использовали для изучения потенциа­лов действия в нерве и полоске миокарда? 2. Как изучали изменение возбудимости в различные фазы потен­циалов действия? 3. Как изменяется возбудимость при возникновении потенциала действия?
1. Биопотенциалы регистрировали с помощью микроэлектродной техники.

2. Изменения возбудимости изучали с помощью измерений порога раздражения в различные фазы потенциалов действия.

3. Во время предспайка возбудимость повышается. При пике по­тенциала действия возникает абсолютный рефрактерный период. При реполяризации возникает относительный рефрактерный период. При отрицательном следовом потенциале наблюдает­ся фаза экзальтации. При положительном следовом потенциале возникает фаза субнормальной возбудимости.


9 Известно, что вокруг клеточных мембран возбудимых тканей суще­ствует неравномерное распределение ионов. Экспериментально увели­чивали градиент концентрации снаружи и внутри возбудимой клетки раздельно для ионов Na, К, Сl, и Са.

Вопросы: Как изменится величина потенциала покоя и потенциала дей­ствия при увеличении градиента концентрации раздельно для ио­нов: 1) Na; 2) К; 3) Сl; 4) Сa?
1. При увеличении градиента концентрации Na величина потенци­ал покоя снизится, величина потенциала действия увеличится.

2. При увеличении градиента концентрации K величина потен­циал покоя возрастет, величина потенциала действия не из­менится.

3. При увеличении градиента концентрации Cl величина потен­циал покоя возрастет, потенциала действия не изменится.

4. При увеличении градиента концентрации Са величина потенциал покоя снизится, величина потенциала действия не изменится.









10 Известно, что процесс возбуждения нервной и мышечной ткани характеризуется изменением ионной проницаемости клеточной мембраны. Экспериментально проводили избирательную блокаду мембранной проницаемости для ионов Na, К, Cl и Са в нервных волокнах и мышечных волокнах скелетной, гладкой и миокардиальной мышц.

Вопрос: Как после этого изменится величина потенциалов покоя и действия в этих волокнах?
1. При блокаде мембранной проницаемости для Na величина потенциала покоя повысится, величина потенциала действия понизится.

2. При блокаде мембранной проницаемости для K величина потенциала покоя понизится, величина потенциала действия не изменится.

3. При блокаде мембранной проницаемости для K и для Cl величина потенциала покоя понизится, величина потенциала действия не изменится.

4. При блокаде мембранной проницаемости для K и для Ca величина потенциала покоя повысится, величина потенциала действия не изменится. В миокардиальных и гладкомышечных волокнах длительность потенциалов действия уменьшится в связи с ускорением реполяризации.



11 Известно, что суммация одиночных мышечных сокращений явля­ется одним из основных свойств мышечной ткани. В эксперименталь­ных условиях изучали способность скелетной мышцы, отрезка кишки и сердца к суммации с помощью нанесения на эти органы двух после­довательных раздражений.

Вопросы: 1. Какие условия надо выполнить, чтобы добиться суммации оди­ночных сокращений? 2. Почему при суммации одиночных сокращений увеличивается амплитуда сокращения? 3. Какие виды мышц не способны к суммации одиночных сокра­щений, и почему это происходит? 4. При каких условиях повторяющиеся ритмические раздражения вызывают зубчатый тетанус, гладкий тетанус, оптимум и пессимум скелетной мышцы?
1. Для суммации одиночных сокращений необходимо соблюде­ние двух условий. Повторное раздражение должно наноситься во время первого одиночного сокращения и не должно попасть в период рефрактерности первого возбуждения.

2. Увеличение амплитуды сокращения при суммации двух одиноч­ных сокращений связано с началом второго сокращения на фоне уже частично сократившейся мышцы.

3. Скелетная мышца способна к суммации одиночных сокращений. Длительность возбуждения и рефрактерного периода в скелет­ной мышце соответствует латентному периоду ее одиночного сокращения. Если повторное возбуждение попадает во время укорочения или расслабления первого одиночного сокращения, то второе сокращение суммируется с первым. В гладкой мышце длительность возбуждения и рефрактерный период соответству­ют латентному периоду и фазе укорочения ее одиночного сокра­щения. Поэтому суммация двух сокращений может произойти в случае попадания второго раздражения в фазу расслабления гладкой мышцы. В сердце длительность возбуждения и рефрак­терный период равны длительности одиночного сокращения. Поэтому суммация одиночных сокращений в миокарде не про­исходит.

4. Зубчатый тетанус возникает, когда каждое последующее раздра­жение попадает в фазу расслабления предыдущего одиночного сокращения. Гладкий тетанус возникает, когда каждое последую­щее раздражение попадает в фазу укорочения предыдущего оди­ночного сокращения. Оптимум возникает, когда каждое после­дующее раздражение попадает в фазу экзальтации предыдущего возбуждения. Пессимум возникает, когда каждое последующее раздражение попадает в абсолютный рефрактерный период преды­дущего возбуждения.



12 Известно, что поддержание постоянства ионного состава в воз­будимых тканях необходимо для их нормального функционирования. Отсутствие солей (и в частности — солей кальция) в питьевой воде у населения отдельного района России привело к нарушению функций скелетной мускулатуры. Обследование населения показало, что даже практически здоровые люди жаловались на повышенную мышечную утомляемость и недостаточную физическую силу.

Вопросы: 1. Какова роль ионов кальция в механизме мышечного сокращения? 2. Почему недостаток кальция в организме сопровождается повы­шенной физической утомляемостью и недостаточной физиче­ской силой у людей? 3. Какие обследования целесообразности для изучения функций скелетной мускулатуры и миокарда?
1. В расслабленном мышечном волокне белок тропонин препят­ствует взаимодействию головок выростов миозина с актином. Мышечное сокращение начинается с выхода ионов кальция из Т-систем и эндоплазматического ретикулума. Ионы кальция со­единяются с тропонином, и он сдвигается в сторону. Головки выростов миозина вступают в контакт с актином, обеспечивая скольжение нитей актина вдоль миозина. Длина саркомеров миофибрилл уменьшается. Длина всей мышцы уменьшается.

2. Количество связанных с тропонином ионов кальция определяет количество поперечных мостиков между нитями актина и ми­озина и, следовательно, силу и длительность сокращения. По­этому недостаток в организме ионов кальция у людей приводит к уменьшению мышечной силы и повышению физической утом­ляемости.

3. Для изучения силы и выносливости скелетной мускулатуры необходимо исследовать динамометрию. Для изучения выносливости сердца необходимо провести исследование функций сердца с физическими нагрузками.











13 Известно, что ацетилхолин является одним из основных медиа­торов нервной системы. Входе обследования испытуемого было уста­новлено, что блокатор ацетилхолинергической передачи возбуждения в синапсах атропин вызвал расширение зрачка, увеличение частоты и силы сердечных сокращений, уменьшение перистальтики желудочно-кишечного тракта. При этом не изменилась сократительная функция скелетной мускулатуры.

Вопросы: 1. На какие постсинаптические рецепторы действует ацетилхолин при выделении его в синаптическую щель? 2. Объясните возможные причины различного действия атропина в нервно-мышечных синапсах соматической нервной системы и в синапсах вегетативной нервной системы на внутренних органах.
1. Медиатор ацетилхолин действует на два вида постсинаптических рецепторов: М- и Н-холинорецепторы. М-холинорецепторы на­ходятся в нейроорганных синапсах парасимпатической нервной системы. Н-холинорецепторы находятся в нервно-мышечных синапсах и вегетативных ганглиях.

2. Атропин блокирует только М-холинорецепторы. Поэтому бло­кируется действие парасимпатической нервной системы, а со­матическая регуляция скелетной мускулатуры не нарушается.



14 Известно, что суммарный потенциал действия нерва складыва­ется из потенциалов действия одиночных нервных волокон, входящих в нерв. Экспериментально исследовали суммарный потенциал дей­ствия изолированного седалищного нерва, выделенного из крупного животного. Раздражение наносили на проксимальный конец нерва. На дистальном конце нерва суммарный потенциал имел сложную форму и состоял из нескольких пиков и волн. Амплитуда его значительно уменьшилась.

Вопросы: 1. С чем связано изменение формы суммарного потенциала дей­ствия по ходу проведения возбуждения в нерве? 2. Как диаметр нервного волокна и наличие миелина влияют на скорость проведения возбуждения? 3. Почему происходит уменьшение амплитуды суммарного потен­циала? 4. Работает ли при этом закон «Всё или ничего»?
1. Расслоение суммарного потенциала действия на отдельные вол­ны связано с различной скоростью проведения возбуждения в волокнах, образующих нерв.

2. Скорость проведения возбуждения больше в миелиновых во­локнах с большим диаметром.

3. Амплитуда суммарного потенциала уменьшается вследствие уменьшения количества нервных волокон на дистальном конце нерва, что связано с ответвлениями от нерва нервных волокон по ходу его длины.

4. Закон “все или ничего” при этом не работает. Суммарный потенциал действия нерва прямо зависит от количества волокон входящих в нерв. Потенциал действия каждого волокна, входящего в нерв, подчиняется закону “все или ничего”.



15 Известно, что утомляемость является одним из основных свойств возбудимой ткани. В эксперименте на нервно-мышечном препарате лягушки проводили ритмическое непрямое раздражение мышцы.

Вопросы: 1. Как изменится амплитуда мышечного сокращения после дли­тельного раздражения нерва? 2. Как изменится амплитуда и частота потенциалов действия в нервных волокнах при развитии утомления в мышце?
1. При длительном раздражении амплитуда мышечных сокращений уменьшается за счет процесса утомления мышцы.

2. Амплитуда и частота потенциалов действия нервных волокон не изменится, так как нервы подчиняются закону относительной неутомляемости.









16 Известно, что лабильность, или функциональная подвижность, является важной характеристикой возбудимых тканей. Эксперимен­тально была исследована лабильность возбудимых тканей лягушки: седалищного нерва, состоящего из миелиновых волокон, одного из сим­патических нервов, состоящего из безмиелиновых волокон, нервно-мы­шечных синапсов и икроножной мышцы.

Вопросы: 1. Как определяли лабильность возбудимых образований? 2. Какой параметр используют как меру лабильности? 3. У каких исследованных образований лабильность выше или ниже и почему? 4. Как лабильность может характеризовать возбудимость исследуемых образований?
1. Лабильность определяют с помощью нанесения ритмических раздражений с увеличивающейся частотой и регистрацией про­цессов возбуждения или сокращения в исследуемой возбудимой ткани.

2. Мерой лабильности является максимальная частота раздраже­ния, которую возбудимая ткань может воспроизвести без транс­формации ритма.

3. Мера лабильности обратно пропорциональна длительности рефрактерного периода. Миелиновые нервные волокна обла­дают наибольшей лабильностью. Безмиелиновые нервные во­локна имеют меньшую лабильность. Лабильность мышечных волокон еще меньше. Наименьшей лабильностью обладают синапсы, что связано с задержкой проведения возбуждения в синапсах.

4. Лабильность является одной из косвенных характеристик возбудимости. Чем больше лабильность, тем больше возбудимость.



17 В эксперименте на животном при действии светового, звукового или тактильного раздражителей в коре головного мозга возникают вызванные электрические потенциалы.

Вопросы: 1. По каким путям импульсы от соответствующих рецепторов по­ступают в кору головного мозга? 2. В каких отделах коры наблюдаются вызванные электрические потенциалы: а) при световых воздействиях; б) при акустических воздействиях; в) при тактильных воздействиях?
1. Возбуждения, возникшие в фоторецепторах сетчатки в ответ на действие светового стимула, поступают по зрительному нерву к верхним буграм четверохолмия, наружным коленчатым телам и далее к коре головного мозга. Возбуждения от механорецепторов внутреннего уха и клеток спирального ганглия поступают по слуховой части вестибулокохлеарного нерва в нижние бугры четверохолмия, внутренние коленчатые тела и далее в кору го­ловного мозга. Возбуждения от тактильных рецепторов кожи поступают по задним канатикам спинного мозга к ядрам задних столбов и дальше в специфические ядра таламуса и в кору го­ловного мозга.

2. а — в первичной и вторичной зрительной затылочной коре на свет; б — в первичной и вторичной слуховой области височной коры на звук; в — в первой и второй соматосенсорной области постцентральной извилины на тактильное раздражение.



18 У собаки на фоне механического раздувания специальным баллончи­ком прямой кишки осуществляют электрическое раздражение участка сенсомоторной коры.

Вопросы: 1. Какой эффект при этом наблюдается? 2. Как объяснить подобный эффект? 3. Какое свойство нервных центров лежит в основе данного эффекта?
1. У животного возникает дефекация.

2. Причиной подобной реакции является электрическое раздраже­ние коры, которое усиливает возбуждение структур мозга, воз­никшее при механическом раздражении кишечника.

3. Способность к формированию на основе физиологической по­требности соответствующего доминирующего возбуждения.








19 В эксперименте у собаки проведено полное удаление мозжечка.

Вопросы: 1. Какие нарушения поведения наблюдаются при этом у животного? 2. Какие функции выполняет мозжечок? 3. С какими структурами мозга связан мозжечок, и какое функци­ональное значение имеют эти связи?
1. Абазия, атония, атаксия, астазия, астения.

2. Формирование программы движения, контроль выполнения движения, коррекция нарушения движения, вегетативное обе­спечение движения.

3. Через верхние ножки мозжечок получает информацию из ас­социативных областей коры о цели действия, через нижние (из спинного мозга) — о состоянии опорно-двигательного аппарата (положение тела и конечностей), через средние — команды от мозжечка к ядрам ствола мозга и к двигательной коре больших полушарий.


20 Для изучения деятельности спинальных нервных центров у лягушки последовательно перерезают нервные корешки, связывающие спинной мозг с периферией.

Вопросы: 1. Какие функции выполняют передние и задние корешки спинно­го мозга? 2. Какой эффект наблюдается при перерезке у лягушки всех задних корешков с левой стороны? 3. Какой эффект наблюдается при перерезке всех передних кореш­ков правой стороны?
1. Передние корешки являются эфферентными двигательными, а задние — афферентными чувствительными.

2. После перерезки у лягушки всех дорсальных корешков левой стороны исчезает сгибательный тонус левых конечностей.

3. При перерезке у лягушки всех вентральных корешков правой стороны исчезают движения правых конечностей.


21 Как известно, в деятельности головного мозга имеет место про­цесс торможения. В процессе рассматривания сложного изображения или прослушивания музыкального фрагмента испытуемый выделяет их световые, цветовые и звуковые характеристики.

Вопросы: 1. Дайте определение центрального торможения. 2. Какие виды центрального торможения вам известны? 3. Какой вид центрального торможения лежит в основе улучше­ния различий частоты звуков, выделения контуров изображения, дифференциации соседних точек прикосновения на коже?
1. Физиологический процесс, возникающий в центральной нерв­ной системе на основе возбуждения и приводящий либо к умень­шению, либо к его полному прекращению.

2. Возвратное, реципрокное, латеральное торможение.

3. Латеральное торможение.


22 При раздражении слабым электрическим током коры головного мозга животного в эксперименте наблюдаются сокращения отдельных мышц туловища и конечностей.

Вопросы: 1. Какие отделы коры головного мозга при этом раздражаются? 2. Какой объем движений (отдельные мышечные волокна, целые мышцы, движения в суставе) наблюдается в этих случаях? 3. На что указывают размеры представительства конечностей в коре головного мозга?
1. Моторные области прецентральной извилины.

2. Как отдельные мышцы, так и группы мышц, формирующие дви­жение в суставе.

3. Размеры представительства движений в моторной коре объяс­няются числом моносинаптических связей между аксонами пи­рамидных нейронов коры и мотонейронами, иннервирующими мышцы головы, туловища, конечностей.


23 В эксперименте на обезьяне регистрируется импульсная актив­ность нервов, несущих информацию от проприоцепторов мышцы-сги­бателя и рецепторов сумки локтевого сустава.

Вопросы: 1. Какие рецепторы мышц и суставов вы знаете? 2. Какую информацию посылают данные рецепторы при сгибании и разгибании конечности в локтевом суставе? 3. Сохранятся ли движения конечности в суставе после перерезки указанных нервов?
1. Нервы мышечных веретен, рецепторы сухожильного органа Гольджи, рецепторы суставной сумки.

2. Рецепторы мышечных веретен трехглавой мышцы посылают информацию о степени, скорости и ускорении ее растяжения; рецепторы сухожильного органа Гольджи — о величине мышеч­ного напряжения; суставные рецепторы — о величине и скоро­сти изменения угла между предплечьем и плечом.

3. Сохранятся.


24 При разрушении в эксперименте некоторых структур головного мозга у обезьяны возникает синдром Клювера-Бьюси.

Вопросы: 1. Какие структуры при этом разрушаются? 2. Какие изменения поведения в этом случае имеют место? 3. Какие функции выполняет отдел головного мозга, в состав которого входят разрушенные структуры.
1. Височная кора и гиппокамп.

2. Гиперсексуальность, оральные реакции, агрессивность.

3. Лимбическая система участвует в обеспечении механизмов памяти, мотиваций, эмоций.





25 Во время нейрохирургической операции у пациента при раздражении коры слабым электрическим током возникли ощущения давления, прикосновения или тепла на коже противоположной стороны.

Вопросы: 1. Какие отделы коры раздражались? 2. Различаются ли представительства участков кожной поверхности туловища и конечностей в коре (“сенсорный гомункулюс”)? 3. Нарисуйте пути проведения импульсов от кожных рецепторов в кору больших полушарий.
1. Задняя постцентральная извилина.

2. Структура представительства различных видов чувствительности в соматосенсорной коре отражает различие в числе рецепторов, расположенных в коже головы, туловища и конечностей.

3. Дается рисунок проведения импульсов от кожных рецепторов до коры.


26 При поперечной перерезке ствола мозга у экспериментального жи­вотного наблюдается состояние децеребрационной ригидности.

Вопросы: 1. В чем это состояние проявляется? 2. Между какими структурами нужно сделать перерезку для по­лучения указанного состояния? 3. Какие механизмы лежат в основе децеребрационной ригидно­сти?
1. Состояние децеребрационной ригидности проявляется повы­шением тонуса мышц-разгибателей туловища и конечностей.

2. Состояние децеребрационной ригидности достигается попереч­ным разрезом мозга ниже красных ядер.

3. Перерезка приводит к устранению тормозного влияния красных ядер на сегментарный аппарат спинного мозга.


27 У децеребрированной кошки при пассивном повороте головы в пра­вую сторону увеличивается тонус мышц-разгибателей обеих правых конечностей; при повороте головы влево — левых конечностей.

Вопросы: 1. Какие причины лежат в основе данного явления? 2. Какие виды тонических рефлексов вы знаете? 3. В каких отделах центральной нервной системы находятся цен­тральные звенья тонических рефлексов?
1. При повороте головы децеребрированного животного с сохра­ненными лабиринтами в одну сторону увеличивается активность вестибулоспинальной системы, повышающей тонус мышц-раз­гибателей той же стороны.

2. Тонические рефлексы бывают статические и статокинетические. Статические подразделяются на рефлексы положения и рефлек­сы выпрямления. Статокинетические подразделяются на реф­лексы в случаях прямолинейного движения тела и рефлексы при круговых движениях.

3. Центры тонических рефлексов расположены в ядрах моста и продолговатого мозга.








28 В эксперименте на кролике электрическое раздражение гипоталамуса, таламуса и ретикулярной формации вызывает характерные изменения электрической активности коры головного мозга.

Вопросы: 1. В чём эти изменения проявляются? 2. В чем причина этих изменений? 3. Какие основные функции обеспечиваются данными структурами головного мозга?
1. При раздражении гипоталамуса наблюдается ограниченная реак­ция активации ЭЭГ в передних отделах коры головного мозга.

2. При раздражении таламуса — в первичных сенсорных проекцион­ных зонах.

3. При раздражении ретикулярной системы — генерализованная активация во всех отделах коры.

В естественных условиях активация гипоталамуса отражает возникновение мотивационного возбуждения, таламуса — приход возбуждений от рецепторов органов чувств, ретикулярной форма­ции — восходящие активирующие влияния, имеющие мотивационную окраску.



29 У животного в эксперименте проведена перерезка спинного мозга.

Вопросы: 1. Какие симптомы имеют место у животного после исчезновения спинного шока? 2. Каковы механизмы появления установленных симптомов? 3. Какие функции спинного мозга вам известны?
1. После травмы по прошествии спинального шока утрачиваются произвольные движения конечностей, наблюдается повышение тонуса скелетной мускулатуры и выпадение всех видов чувстви­тельности туловища и конечностей.

2. Полное прекращение связей спинного мозга с вышерасположен­ными отделами головного мозга.

3. Сегментарно-рефлекторная функция, проводниковая функция, функция автоматии центров спинного мозга.


30 В неврологическое отделение поступил больной с высоким обрывом спинного мозга, наступившим в результате автомобильной аварии.

Вопросы: 1. Какие симптомы имеют место у пострадавшего? 2. Каковы механизмы появления установленных симптомов? 3. Какие функции спинного мозга Вам известны?
1. после травмы по прошествии спинального шока утрачиваются произвольные движения конечностей, повышение мышечного тонуса и выпадение всех видов чувствительности туловища и конечностей.

2. Полное прекращение связей спинного мозга с вышерасположенными отделами головного мозга.

3. Сегментарно-рефлекторная функция, проводная функция, функция центров автоматии спинного мозга.








31 В клинику поступил больной с кровоизлиянием в структуры про­долговатого мозга.

Вопросы: 1. Какие основные центры продолговатого мозга вам известны? 2. Какие симптомы наблюдаются при поражении продолговатого мозга? 3. В чем заключается опасность поражения продолговатого мозга?
1. Сердечно-сосудистый центр; дыхательный центр; центры защит­ных реакций: рвотный, чихательный, кашлевой; центры некото­рых тонических рефлексов.

2. Нарушения сердечно-сосудистой и дыхательной функций.

3. Остановка сердца, коллапс сосудов, остановка дыхания.


32 При действии раздражителей на экстеро или интерорецепторы импульсы от последних поступают в центральные отделы анализаторов.

Вопрос: Какими механизмами могут распространяться поступление возбуждения в центральной нервной системе?
Иррадиация, суммация, конвергенция, мультипликация, промонгирование, оккмозия.

33 В опыте И.М.Сеченова для демонстрации центрального торможения предварительно осуществляют глубокий поперечный разрез на уровне зрительных бугров.

Вопрос: Какая цель достигается данной операцией?
Для исключения влияния центров коры больших полушарий.







34 В каком компоненте рефлекторной дуги, как и в каких условиях протекают процессы, приводящие к изменению времени рефлекторной реакции?
В центральном компоненте, а также на уровне рецептора и афферентного волокна.

35 Для изучения деятельности нервных спинальных центров животных выполняют операцию перерезки спинного мозга или нервов, ведущих к этому центру.

Вопрос: Какой эффект наблюдается у лягушек при перерезке всех задних корешков с левой стороны или всех передних корешков правой стороны тела?
При перерезке задних корешков слева исчезает чувствительность и снижается двигательная активность.

При перерезке передних корешков исчезает двигательная активность.



36 В процессе обучения игре на музыкальных инструментах или печатанью на компьютере приобретается лёгкость и автоматизм двигательного навыка.

Вопрос: Какими свойствами нервных центров можно объяснить эти явления?
Эти явления можно объяснить свойством пластичности доминанта, тонусом нервного центра.










37 В условиях хронического эксперимента у голодной кошки нейрон коры мозга в ответ на микроионофоретическое поведение раствора ацетилхолина даёт активационную реакцию. Тот же нейрон у сытого животного отвечает на поведение ацетилхолина тормозной реакцией.

Вопрос: Какими свойствами нейрона можно объяснить описанный эффект.
Центр голода находится в гипоталамусе. Он оказывает возбуждающее действие на рядом лежащие центры, когда организм голоден. АХ вызывает возбуждение; когда сыт – тормозит.

Чувствительность к химическим факторам нервных клеток зависит от восходящего химического влияния нервных центров гипоталамуса.



38 В опыте И.М.Сеченова доказательством наличия центрального торможения является увеличение времени защитной оборонительной реакции после помещения кристалла соли в область зрительных бугров мозга лягушки.

Вопрос: Какие клеточные механизмы лежат в основе этого явления?
Пресинаптическое и постсинаптическое торможение.

39 При раздражении волокон, идущих от кожных болевых рецепторов, возникает расширение сосудов и покраснение области кожи, иннервируемой данными волокнами.

Вопрос: Почему описанная реакция сохраняется после разрушения спинного мозга у животных в эксперименте?
Возникает аксональный рефлекс – рефлекс без участия центральной нервной системы.







40 Какой эффект наблюдается при электрическом раздражении сенсомоторной коры животного на фоне механического раздувания прямой кишки? Как объяснить наблюдаемый эффект?
Происходит активация дефекации, то есть при электрическом раздражении коры уменьшается её тормозящее действие на центр дефекации, который находится в спинном мозге.

41 В деятельности головного мозга большую роль играет процесс торможения.

Вопрос: Какой вид центрального торможения лежит в основе улучшения частоты звуков, контрастности контуров воспринимаемого торможения, дифференцировки соседних точек прикосновения на коже?
Латеральное торможение.

42 В опыте Орбели—Гинецинского проводили длительную стимуляцию седалищного нерва частотой 1 Гц, что вызывало сокращение икронож­ной мышцы и через некоторое время — развитие ее утомления (ослабле­ние мышечных сокращений вплоть до полного их прекращения). Затем на фоне продолжающейся стимуляции двигательного нерва добавляли раздражение симпатических нервных волокон, иннервирующих ту же мышцу.

Вопросы: 1. Что при этом наблюдали в опыте? 2. Чем обусловлен этот эффект? 3. Какая теория была сформулирована на основании этого и других аналогичных фактов?
1. В опыте наблюдали восстановление работоспособности мышцы.

2. Этот эффект обусловлен прямым действием симпатической нервной системы на обмен веществ мышечной ткани и не связан с сосудистыми влияниями.

3. Теория Л. А. Орбели об адаптационно-трофической функции симпатический нервной системы. Согласно этой теории, сим­патическая нервная система регулирует обмен веществ, трофику и возбудимость органов и тканей организма.








43 Обнаружено, что при раздражении вагосимпатического ствола у лягушки сначала наблюдается уменьшение силы и частоты сердечных сокращений вплоть до остановки сердца в диастолу. Потом наблюда­ется восстановление сердечной деятельности, причем некоторое время сердце сокращается с большей частотой и силой, чем до раздражения вагосимпатического ствола. При раздражении вагосимпатического ствола после аппликации атропина наблюдается увеличение частоты и силы сердечных сокращений.

Вопросы: 1. Чем обусловлено начальное уменьшение силы и частоты сердеч­ных сокращений? 2. Почему после прекращения раздражения вагосимпатическо­го ствола наблюдается усиление сократительной деятельности сердца? 3. Почему при раздражении вагосимпатического ствола после ап­пликации не наблюдается вагусного торможения?
1. Начальное уменьшение силы и частоты сердечных сокращений обусловлено влиянием волокон блуждающего нерва.

2. Усиление сократительной функции сердца после прекращения раздражения вагосимпатического ствола обусловлено влиянием симпатической нервной системы. В составе вагосимпатического ствола у лягушки кроме преганглионарных волокон блуждающего нерва (типа В) есть постганглионарные волокна симпатических нервов (типа С). По миелинизированным волокнам типа В воз­буждение распространяется быстрее, чем по волокнам типа С. После прекращения раздражения медиатор ацетилхолин быстро инактивируется ацетилхолинэстеразой, а норадреналин еще про­должает действовать.

3. Атропин, являясь М-холиноблокатором, блокирует проведение возбуждения на уровне интрамуральных парасимпатических ган­глиев, прекращая таким образом тормозящее действие блуждаю­щих нервов на сердце.


44 Для снятия тахикардии в клинической практике используют фар­макологические препараты, блокирующие β-адренорецепторы (напри­мер, пропранолол).

Вопросы: 1. Почему блокада (β-адренорецепторов может снять приступ тахи­кардии? 2. Можно ли применять эти препараты у людей, склонных к бронхоспазмам? 3. Можно ли применять эти препараты при пониженном артери­альном давлении?
1. Норадреналин, являющийся медиатором в постганглионарных окончаниях симпатических нервов, взаимодействует с (β-адренорецепторами миокарда, приводя к увеличению частоты сер­дечных сокращений. Применение неселективного β-адреноблокатора приводит к снижению ЧСС.

2. Нет. В гладких мышцах бронхов локализованы β-адренорецепторы, активация которых симпатическими нервами приводит к расслаблению мышц. Соответственно, применение β-адреноблокатора приводит к повышению тонуса бронхов.

3. Нет. Применение β-адреноблокатора приводит к понижению артериального давления.


45 Для купирования приступов бронхиальной астмы, вызванной бронхоспазмом (удушье, вызванное уменьшением просвета бронхов и бронхиол при нормальной функции мукоцитов), иногда используется адреналин.

Вопросы: 1. Какими физиологическими механизмами обусловлен эффект адреналина в данном случае? 2. Почему, прежде чем вводить адреналин, у больного следует опре­делить величину артериального давления? 3. Какие сопутствующие физиологические эффекты могут при этом наблюдаться?
1. В гладких мышцах бронхов локализованы β2-адренорецепто-ры, активация которых адреналином приводит к расслаблению мышц и снятию бронхоспазма.

2. Адреналин вызывает увеличение артериального давления.

3. Может наблюдаться увеличение силы и частоты сердечных со­кращений, повышение уровня глюкозы в крови.








46 В эксперименте показано, что координированная моторика желу­дочно-кишечного тракта (перистальтика, ритмическая сегментация и т.д.) сохраняется даже после перерезки иннервирующих его симпа­тических и парасимпатических нервов.

Вопросы: 1. Какие механизмы обеспечивают сохранение координированной моторики желудочно-кишечного тракта в этом случае? 2. Какое влияние на моторную функцию желудочно-кишечного тракта в организме оказывают симпатический и парасимпати­ческий отделы вегетативной нервной системы?
1. После перерезки симпатических и парасимпатических нервов координированная моторика желудочно-кишечного тракта обе­спечивается рефлекторными дугами, замыкающимися в пределах мышечного и подслизистого сплетений в стенках пищеваритель­ных органов — интрамуральных ганглиев.

2. Блуждающие нервы посредством холинергического механизма усиливают моторику желудочно-кишечного тракта (увеличива­ют ритм и силу сокращений). Вместе с тем, блуждающие нервы оказывают и тормозное влияние: вызывают релаксацию желудка, снижают тонус пилорического сфинктера. Симпатические нервы через α-адренорецепторы тормозят мо­торику желудочно-кишечного тракта. Известны и стимулирующие влияния симпатических нервов, например, на пилорический сфинктер.



47 В практике «скорой помощи» для купирования приступа печеночной колики, вызванной спазмом желчевыводящих путей, используют веще­ства, блокирующие мускариновые холинорецепторы (М-холиноблокаторы, например, платифиллин).

Вопросы: 1. Какой физиологический механизм обусловливает лечебный эффект М-холиноблокаторов в этом случае? 2. Какие сопутствующие физиологические эффекты могут при этом наблюдаться?
1. Активная моторная деятельность желчного пузыря и желчевыводящих путей связана с функцией блуждающих нервов. Блокада М-холинорецепторов гладких мышц вызывает временное вы­ключение влияний вагуса и, следовательно, снижение тонуса и моторики желчевыводящих путей и самого желчного пузыря.

2. Сопутствующими эффектами могут быть сухость во рту, умень­шение спазмов желудка, кишечника, непродолжительное рас­ширение зрачков.



48 В офтальмологической практике для расширения зрачков использу­ют раствор атропина, являющегося М-холиноблокатором.

Вопросы: 1. Почему закапывание раствора атропина вызывает расширение зрачка? 2. Могут ли при этом наблюдаться изменения частоты и силы сер­дечных сокращений? 3. Может ли при этом измениться сократительная функция скелет­ной мускулатуры?
1. Зрачок суживается при сокращении кольцевой мышцы (сфинк­тера) радужки, которая иннервируется парасимпатическими во­локнами глазодвигательного нерва. Атропин, избирательно бло­кируя М-холинорецепторы мышцы, вызывает расширение зрачка.

2. М-холиноблокатор атропин вызывает расширение зрачка, увели­чение частоты и силы сердечных сокращений, уменьшение пери­стальтики желудочно-кишечного тракта (М-холинорецепторы).

3. При этом не изменяется сократительная функция скелетной му­скулатуры (Н-холинорецепторы).








49 Стеноз (сужение) привратника желудка может быть вызван либо гипертонусом мускулатуры, либо Рубцовыми изменениями его стенок, что не дифференцируется по рентгенограмме. Для уточнения диагноза может использоваться введение атропина, являющегося М-холиноблокатором.

Вопросы: 1. Какой эффект будет наблюдаться после введения атропина, если стеноз был вызван: гипертонусом мускулатуры? Рубцовыми из­менениями стенок? 2. Каково физиологическое обоснования применения атропина в этой ситуации? 3. Какие сопутствующие физиологические эффекты могут при этом наблюдаться?
1. После введения атропина (М-холиноблокатор) будет наблюдать­ся расслабление стенок привратника в случае гипертонуса и от­сутствие эффекта при Рубцовых изменениях.

2. Тонус привратника зависит, в первую очередь, от функций блуж­дающих нервов. При их выключении атропином посредством блокады М-холинорецепторов тонус снижается. Атропин в этом случае позволяет отдифференцировать органические поврежде­ния привратника от функциональных.

3. При этом может наблюдаться увеличение ЧСС, сухость во рту и расширение зрачков.


50 При операциях на органах брюшной полости при общем обезболива­нии хирурги обязательно производят новокаинизацию брыжейки, бло­кируя таким образом проведение возбуждения по нервным волокнам.

Вопросы: 1. С какой целью это делается? 2. Какие рефлекторные вегетативные реакции могут наблюдаться при механическом раздражении органов брюшной полости? 3. Нарисуйте схему рефлекторной дуги одного из таких вегетатив­ных рефлексов.
1. Блокада афферентных нервов, расположенных в брыжейке, пре­дохраняет организм от возникновения нежелательных висцеро-вегетативных рефлексов.

2. Может наблюдаться остановка сердца, изменения моторики и секреции разных отделов желудочно-кишечного тракта.

3. Схема: рецепторы брыжейки — афферентные волокна блуждаю­щего нерва — ядро блуждающего нерва — сердце.


51 Перед операцией под общим обезболиванием больному в числе так называемых предмедикационных средств вводят атропин, являющийся М-холиноблокатором.

Вопросы: 1. С какой целью это делается? 2. Какие сопутствующие физиологические эффекты могут при этом наблюдаться? 3. Может ли при этом измениться сократительная функция скелет­ной мускулатуры?
1. Атропин, блокируя М-холинорецепторы в постганглионарных синапсах блуждающего нерва, тем самым выключает его эффе­рентные влияния на деятельность различных органов и отделов желудочно-кишечного тракта, устраняя тем самым нежелатель­ные рефлекторные реакции: например, усиление перистальтики и секреции желудка, кишечника.

2. При этом может наблюдаться увеличении ЧСС, сухость во рту и расширение зрачков.

3. Скелетная мускулатура при этом остается интактной, так как там нет М-холинорецепторов.








52 У новорожденных детей частота сердечных сокращений (ЧСС) достигает 140—150 в минуту, тогда как у взрослых она составляет 60—80 в минуту. Известно, что чем старше ребенок, тем более зна­чительное учащение ритма сердечных сокращении наступает после введение атропина, являющегося М-холиноблокатором.

Вопросы: 1. Чем обусловлено учащение ритма сердечных сокращений при введении атропина? 2. Какими особенностями регуляции сердечной деятельности об­условлена более высокая частота ЧСС у детей и ее уменьшение по мере взросления организма?
1. Атропин, блокируя М-холинорецепторы в постганглионарных синапсах блуждающего нерва, тем самым прекращает его тор­мозные влияния на сердечную деятельность.

2. После рождения у детей преобладают механизмы симпатической регуляции сердечно-сосудистой системы. По мере роста ребенка это преобладание становится менее выраженным, так как посте­пенно нарастает тоническое возбуждение центров блуждающих не­рвов. Проявлениям этого является уменьшение с возрастом ЧСС.



53 Центры симпатического и парасимпатического отделов вегета­тивной нервной системы имеют различную локализацию.

Вопросы: 1. Где расположены центры симпатического и парасимпатического отделов вегетативной нервной системы? 2. Какие эффекты будут наблюдаться при перерезке спинного моз­га на уровне нижних шейных сегментов?
1. Центры симпатического отдела вегетативной нервной системы расположены в задних отделах гипоталамуса, мозжечке, среднем, продолговатом мозге, а также в боковых рогах, начиная с 1-го грудного и кончая 3—4 сегментами поясничного отделов спинно­го мозга. Центры парасимпатической нервной системы располо­жены в передних отделах гипоталамуса, мозжечке, продолговатом мозге, во 2—4 сегментах сакральных отделов спинного мозга.

2. После перерезки спинного мозга на уровне нижних шейных сегментов у человека наблюдается падение кровяного давления, брадикардия, усиление моторики желудочно-кишечного тракта и синдром Горнера (экзофтальм, сужение зрачка, наплывание на глаз 3-го века).



54 Рефлекторные дуги соматической и вегетативной нервной систем существенно различаются.

Вопросы: 1. В чем морфологические различия рефлекторных дуг вегетатив­ной и соматической нервных систем? 2. Каково различие в морфофункциональной организации реф­лекторных дуг симпатической и парасимпатической нервной системы?
1. Отличие рефлекторных дуг вегетативной нервной системы от соматической нервной системы заключается в том, что в эф­фектное звено рефлекторных дуг вегетативной нервной системы включены нервные ганглии.

2. Рефлекторные дуги парасимпатической нервной системы имеют более длинный путь до ганглиев, расположенных в самих иннервируемых органах.







55 В пре- и постсинаптических окончаниях вегетативной нервной сис­темы выделяются различные медиаторы и олигопептиды.

Вопросы: 1. В чем сходство и различие выделения медиаторов в пре- и пост­синаптических окончаниях симпатической и парасимпатической нервной системы? 2. Какой физиологический эффект наблюдается после симпатиче­ской и парасимпатической денервации?
1. В пре- и постганглионарных окончаниях парасимпатической нервной системы выделяется ацетилхолин. В преганглионарных окончаниях симпатической нервной системы выделяется ацетил­холин, а в постганглионарных окончаниях — норадреналин (ис­ключение — потовые железы).

2. После симпатической и парасимпатической денервации органов наблюдается их повышенная чувствительность к нейромедиаторам и олигопептидам.



56 Ганглии вегетативной нервной системы имеют различную лока­лизацию, а пре- и постганглионарные волокна симпатической и пара­симпатической нервной системы имеют разную скорость проведения возбуждения.

Вопросы: 1. В чем различия симпатической и парасимпатической иннерва­ции внутренних органов? 2. Какие влияния — симпатической или парасимпатической нерв­ной системы — сказываются быстрее на функциях внутренних органов и почему?
1. Ганглии симпатического отдела вегетативной нервной системы расположены цепочками по обе стороны от позвоночника (паравертебральные) и на некотором удалении от него (превертебральные). Преганглионарные волокна короткие, типа В. Постганглионарные волокна короткие, типа С.

2. Влияния парасимпатической нервной системы быстрее сказыва­ются на функциях внутренних органов, так как симпатическая нервная система на периферии на значительном протяжении представлена постганглионарными волокнами типа С, по кото­рым возбуждение распространяется медленнее.



57 Потовые железы по сравнению с другими органами, инневируемыми симпатической нервной системой, имеют особенности симпатической иннервации.

Вопросы: 1. В чем особенности симпатический иннервации потовых желез? 2. Какие эффекты потовых желез наблюдаются после введения атропина?
1. Постганглионарные симпатические волокна, иннервирующие потовые железы, являются холинергическими. Медиатор ацетилхолин повышает активность потовых желез за счет взаимо­действия с М-холинорецепторами.

2. После введения атропина будет уменьшаться или прекращаться потоотделение в результате блокады М-холинорецепторов, так как атропин является М-холиноблокатором.









58 В клинической практике для купирования приступов тахикардии иногда надавливают на глазные яблоки пациента.

Вопросы: 1. Почему этот прием может привести к снижению частоты сердеч­ных сокращений? 2. Как называется этот рефлекс? 3. Какие еще экстракардиальные рефлексы вам известны?
1. Надавливание на глазные яблоки, вызывая раздражение аффе­рентных волокон блуждающих нервов, приводит к повышению тонуса их ядер и усилению тормозного влияния блуждающих нервов на сердечную деятельность.

2. Глазосердечный рефлекс (Даньини—Ашнера).

3. Солярный (Тома—Ру), синокаротидный (Чермака), дыхательно-сердечный (Геринга), рефлекс Гольтца.


59 К эндокринологу обратился пациент для заключения о состоянии функции щитовидной железы. В анализе крови — пониженное содер­жание тиреоидных гормонов.

С диагностической целью пациенту ввели тиролиберин (ТРГ). Ре­зультаты исследования: через 20 мин после введения тиролиберина у него повысилось содержание в крови тиротропина (ТТГ) в 5 раз, а через 4 ч возросло на 70 % содержание тиреоидных гормонов (T4и T3)

Вопросы: 1. В каком звене нарушен гипоталамо-гипофизарно-тиреоидный гармональный механизм? 2. Имеется ли у пациента гипофизарная недостаточность? 3. Имеется ли у пациента нарушение функции щитовидной же­лезы?
1. Недостаточное содержание тиреоидных гормонов в организме может быть следствием поражения гипоталамуса, гипофиза и щитовидной железы.

2, 3. В данном случае при введении ТРГ уровень ТТГ и тиреоидных

гормоном возрастает, т.е. поражения гипофиза и щитовидной железы у пациента нет, а имеет место нарушение продукции тиролиберина в гипоталамусе.


60 На приеме у педиатра находился ребенок 10 лет с жалобами на сонливость, ослабление внимания, слабую успеваемость. При диагно­стическом обследовании у ребенка выявлена пониженная функция щи­товидной железы.

Вопросы: 1. Какой элемент необходим для нормального секреторного цикла тиреоидных гормонов? 2. Какие рекомендации следует дать этому пациенту? 3. Увеличена или уменьшена у данного пациента щитовидная же­леза?
Недостаточное содержание в организме тиреоидных гормонов (Т4 и Т3) может быть вызвано различными факторами, к числу ко­торых относят недостаточное поступление йода в организм, врож­денное нарушение биосинтеза тиреоидных гормонов, воздействие радиоактивного облучения.

1. Для нормального секреторного цикла тиреоидных гормонов Т4 и Т3 необходим йод.

2. Ребенку следует принимать йодосодержащие препараты, в пи­щевом рационе следует использовать йодированную соль.

3. Объем щитовидной железы увеличен.






61 Рассмотрите следующие этапы и результаты эксперимента:

1. Две группы самцов-крыс помещали в клетки, разделенные сет­чатой перегородкой.

2. В свободную половину клеток подсаживали самок в состоянии эструса.

3. Одной из групп до подсадки самок вводили препарат — блокатор люлибериновых рецепторов, вторая группа была контрольной.

4. Исследовали динамику тестостерона и лютропина в крови сам­цов обеих групп после подсадки самки.

В контрольной группе выявили динамику повышения уровня тесто­стерона через 20 — 40 мин после предъявления самки. Подъему уровня тестостерона способствовал пик лютропина.

Во второй группе после введения препарата выявили понижение ис­ходного уровня тестостерона в 8раз. На фоне блокады люлибериновых рецепторов у самцов в присутствии самки не происходило повышения уровня тестостерона в крови.

Вопросы: 1. Каков механизм торможения продукции тестостерона при вве­дении антагониста рецепторов люлиберина? 2. Как регулируется секреция тестостерона?
1. Регуляция осуществляется гипоталамо-гипофизарным комплек­сом и механизмами обратных гормональных связей.

2. Блокада люлибериновых рецепторов гипофиза приводит к тор­можению секреции лютропина и последующему понижению се­креции тестостерона. Понижение уровня тестостерона вызывает угнетение половой мотивации.



62 После отборочного тура к международному конкурсу бальных тан­цев были допущены стажеры и танцевальные пары, имевшие опыт выступления на престижных конкурсах. Перед выступлением в обе­их группах возрос уровень адреналина, у некоторых из стажеров в 10 раз.

Вопросы: 1. Какое физиологическое и метаболическое действие оказывает адреналин на органы-мишени? 2. Как изменяется уровень глюкозы в крови при повышении кон­центрации адреналина в крови? 3. Какой процесс протекает в печени при действии адреналина? 4. Как происходит обеспечение энергией сердечной мышцы при сильном эмоциональном стрессе?
1. Энергомобилизирующее, адаптационно-трофическое. Стимули­рует гликолиз, липолиз, вызывает перераспределение кровотока к скелетной мускулатуре, активирует дыхание.

2. Повышается.

3. Распад гликогена, высвобождение глюкозы из печени в кровь.

4. За счет запасов гликогена в миокарде, высвобождения глюкозы при его распаде под влиянием адреналина через возбуждение (β1-адренорецепторов миокарда.



63 Пациент перенес в результате бытовой травмы значительную кровопотерю, которая сопровождалась понижением артериального давления крови.

Вопросы: 1. Действие каких гормонов можно рассматривать как «первую ли­нию зашиты» при понижении кровяного давления, вызванного кровопотерей? 2. Какие гормоны способствуют восстановлению объема массы крови на поздних сроках после травмы? 3. Физиологические эффекты какого из двух гормонов — вазопрессина или альдостерона — развиваются на поздних этапах вос­становления уровня кровяного давления?
1. Ими являются адреналин, вазопрессин.

2. Ренин-ангиотензин-альдостероновая система, эритропоэтин.

3. Это альдостерон — стероидный гормон, его эффекты проявля­ются через несколько дней после включения ренин-ангиотензинового механизма.








64 На приеме у эндокринолога находится ребенок с задержкой роста. После обследования ему назначили ряд гормонов, в том числе лечение соматолиберином и соматотропином.

Вопросы: 1. Функция какой из желез внутренней секреции нарушена у ре­бенка? 2. Почему для лечения задержки роста назначены оба гормона? 3. В чем состоит различие в действии этих гормонов? 4. Какие периферические физиологические эффекты оказывает соматотропин при задержке роста?
1. Функция аденогипофиза.

2. Для предупреждения карликовости.

3. Соматолиберин оказывает стимулирующее действие на продук­цию соматотропина в гипофизе.

4. Соматотропин оказывает периферическое действие: повышает синтез белков и увеличение стромы организма, регулирует жиро­вой и углеводный обмен, способствует росту скелета и костей в длину, стимулирует синтез и секрецию соматомединов из печени, которые регулируют рост нескелетных тканей.



65 Пациент Н. получает продолжительное лечение кортизолом по поводу воспалительного процесса, обратился к врачу с жалобами на отечность и снижение мышечной массы. При обследовании были вы­явлены дополнительные данные: повышение уровня глюкозы в крови и повышение кровяного давления.

Вопросы: 1. Вследствие каких изменений в мышцах уменьшилась их масса? 2. Вследствие каких изменений развилась гипергликемия? 3. Каков механизм развития отеков? 4. Каков механизм развития гипертензии?
Осложнения после длительного приема кортизола вызваны тем, что:

1. Кортизол вызывает распад белков и угнетение их синтеза в мышцах.

2. Кортизол также стимулирует распад жира и стимулирует обра­зование глюкозы из аминокислот и продуктов липолиза в про­цессах глюконеогенеза. Поступление глюкозы в кровь приводит к гипергликемии.

3. Отеки связаны с альдостеронподобным действием кортизола на реабсорбцию натрия в почечных канальцах и последующим уве­личением объема межклеточной жидкости.

4. Гипертензия развивается вторично, вследствие повышенной реабсорбции воды в кровь и увеличения объема массы крови.


66 Рассмотрите графики ритма секреции и концентрации кортизола в крови (рис. А и рис. Б) у пациентов, ведущих здоровый образ жизни, и у людей с нарушенными ритмами сна и отдыха, режимом питания, имеющих стрессорные нагрузки.

Вопросы: 1. Какой из графиков отражает нарушение секреции кортизола? 2. Какие факторы влияют на ритм секреции кортизола? 3. Каков физиологический суточный ритм секреции кортизола и максимальный уровень его в крови в течение суток?
1. График Б.

2. К ним относят: нарушение цикла «сон—бодрствование», напря­женный и неупорядоченный режим труда (ночные смены и др.), эмоциональные нагрузки, нарушения режима питания.

3. Уровень кортизола в крови в течение суток колеблется в соот­ветствии с циркадианными ритмами секреции гормона. Макси­мальная концентрация гормона отмечена в утренние часы (6—8 ч утра).








67 В различных условиях эксперимента наблюдали окраску кожи ля­гушки. В пигментных клетках (меланофорах) кожи лягушки находятся многочисленные мелкие зерна темного пигмента.

Распределение пигмента изменяется благодаря движениям цито­плазмы меланофоров. Окраска светлеет, когда пигмент сконцентри­рован вокруг ядра клеток, и темнеет, когда зерна пигмента распреде­ляются вдоль отростков клеток в большом пространстве тела.

Меланофоры лягушки лишены иннервации и их функциональное состо­яние регулируется меланоформным гормоном (меланин) и адреналином.

Рассмотрите три этапа эксперимента:

I. Интактной лягушке ввели подкожно адреналин. Уже через 3— 5 мин наблюдали эффект быстрого перемещения пигмента. Через 10— 20мин весь пигмент концентрировался около ядра. Кожа посветлела; вместе с тем, действие адреналина было кратковременным.

II. После удаления гипофиза кожа лягушки сильно посветлела, и этот эффект был устойчивым.

III. Гипофизэктомированной лягушке ввели меланофорный гормон. Через 30мин началось поступление пигмента в отростки, через 2,5 ч кожа лягушки потемнела.

Вопросы: 1. Почему эффект адреналина является кратковременным? 2. Какую картину можно наблюдать в меланофорах и сосудах кожи лягушки после введения адреналина? 3. Почему после гипофизэктомии кожа лягушки светлеет? 4. Почему действие меланофорного гормона проявляется медленно и протекает длительно?
1. Адреналин быстро разрушается ферментом моноаминоксидазой.

2. Сосуды кожи суживаются, а в отростках меланофоров проис­ходит движение пигмента в направлениях к ядру клеток.

3. Нет продукции меланофорного гормона.

4. Латентный период связан с синтезом пигмента под влиянием введенного гормона, его распределением и движением по от­росткам клеток всей поверхности кожи.



68 Рассмотрите графики базальной температуры 2-х пациенток, одна из которых страдала бесконтрольным употреблением алкоголя и табакокурением. В замужестве обратилась к врачу по поводу нарушения менструального цикла. Отказ от вредных привычек и выполнение ре­комендаций врача привели к положительному результату.

Вопросы: 1. Какой из графиков менструального цикла отражает нормальный и нарушенный менструальный цикл? 2. Какие нарушения менструального цикла выявлены по тесту ба-зальной температуры? 3. Какие последствия возможны у пациентки в детородном периоде при нарушении менструального цикла данного типа?
1. График А — нормальный, Б — нарушенный.

2. График Б выявил нарушение менструального цикла, отсутствие овуляции.

3. Бесплодие.


70 В опыте наблюдали и регистрировали сокращения сердца и матки беременной крысы. После введения адреналина на кимограмме выявили изменения амплитуды мышечных сокращений.

Вопросы: 1. С какими рецепторами взаимодействует адреналин в миометрии и миокарде? 2. Как изменилась сила сокращений сердца и матки?
1. В миометрии — с β2-адренорецепторами, а в миокарде — с β1-адренорецепторами.

2. Сила сокращений сердца увеличивается, а матки — уменьша­ется.



71 У обследуемого для оценки состояния периферического кровото­ка и реактивности сосудов конечностей в положении сидя зареги­стрированы реовазограммы предплечий в состоянии покоя и после аппликации предплечья на 3 мин пузырем со льдом. Исходно выявлено, что амплитуды реографических волн с обоих предплечий снижены по отношению к нормативам в 2 раза, длительность анакроты превы­шает возрастную норму, высота дикротический части почти равна высоте основной волне реограммы. После аппликации холода суще­ственных изменении в параметрах реовазограмм обоих предплечий не произошло.

Вопросы: 1. Дайте физиологическую интерпретацию указанным сдвигам реографических показателей. 2. Какова цель проведения холодовой пробы, и какова нормальная сосудистая реакция, отслеживаемая по реографическим показа­телям? 3. Как можно охарактеризовать периферический кровоток в пред­плечьях и сосудистую реактивность обследуемого?
1. Указанные сдвиги являются основными признаками повышения тонуса артерий.

2. Холодовая проба проводится с целью определения сосудистой реактивности (оценка направленности и степени изменения ре-ографических показателей). В норме в ответ на холодовое воз­действие происходит уменьшение амплитуды реовазограммы и реографического индекса, удлиняется время анакроты, закру­гляется вершина реовазограммы, увеличивается реографический коэффициент.

3. Снижение периферического кровотока и низкая сосудистая ре­активность.


69 В опытах на сращенных животных-парабионтах изучали взаимо­отношения между гипофизом и половыми железами. После операции сшивания двух животных у них устанавливается общее кровообра­щение. Затем у одной крысы удалили гипофиз, а у второй — гонады. Гипофиз кастрата начал выделять большие количества фоллитропина, и его содержание в крови сохранялось высоким.

Вопросы: 1. По какому механизму повысилась секреция фоллитропина у ка­стрированной крысы? 2. Почему половые гормоны, вырабатываемые в гонадах крысы с удаленным гипофизом, не тормозят продукцию фоллитропина у крысы-кастрата?
1. Недостаток половых гормонов в крови стимулирует по механиз­му обратной связи продукцию фоллитропина.

2. Половые гормоны сравнительно быстро активируются в печени и других органах этой крысы.











72 Человек внезапно потерял сознание. Через некоторое время нахож­дения в горизонтальном положении сознание пострадавшего восста­новилось, но сохраняется его спутанность, слабость, головокружение. При обследовании: дыхание ровное, 20 в мин; пульс слабого наполнения; ЧСС - 260 уд./мин; АД - 85/65.

Вопросы: 1. Какова вероятная причина потери сознания? 2. С чем может быть связаны выявленные изменения кардиогемодинамики (АД и ЧСС)? 3. Каким образом (без применения лекарственных средств) можно уменьшить тахикардию? Изменится ли при этом АД? 4. Какие физиологические механизмы лежат в основе предложен­ных манипуляций?
1. Вероятная причина— приступ пароксизмальной тахикардии. При такой степени тахикардии значительно снижается длитель­ность фазы диастолы и, соответственно, диастолическое запол­нение желудочков сердца кровью. Снижение насосной функции сердца ведет к снижению мозгового кровотока и к гипоксии головного мозга, что и послужило причиной потери сознания.

2. При падении артериального давления уменьшается импульсация от барорецепторов сосудов, что ведет к включению механизмов внутреннего звена саморегуляции — усилению сердечной дея­тельности.

3. Наиболее простым способом уменьшения тахикардии является проведение глазосердечного рефлекса.

4. При надавливании на глазные яблоки раздражение передается в гипоталамус, а далее — на центры продолговатого мозга, где фор­мируется реакция в виде повышения активности нисходящего па­расимпатического влияния на сердечный ритм: ЧСС уменьшается.



73 У пациента, страдающего венозной недостаточностью, наиболее выраженной в нижних конечностях (отечность нижних конечностей при длительном стоянии, набухание вен на ногах), при проведении ортостатической пробы произошли следующие изменения кардиогемодинамических показателей.

На 4—5-й мин пробы пациент начал жаловаться на головокруже­ние, появление темноты перед глазами.

Вопросы: 1. В чем заключается физиологический смысл нагрузочной ортостатической пробы (на тестирование каких механизмов она на­правлена)? 2. Как можно оценить реакцию пациента на ортостаз, и с чем она может быть связана?
1. Нагрузочная ортостатическая проба применяется, в первую очередь, для оценки реактивности симпатического и парасим­патического отделов ВНС в регуляции деятельности сердца и выявления толерантности к резким изменениям положения тела в связи с условиями профессиональной деятельности. При пере­ходе из горизонтального положения в вертикальное уменьшает­ся поступление крови к правым отделам сердца; при этом цен­тральный объем крови снижается примерно на 20 %, минутный объем — на 1—2,7 л/мин. Как следствие снижается артериальное давление, которое является мощным раздражителем барорецеп-торных зон. При этом в течение первых 15 сердечных сокраще­ний происходит увеличение ЧСС, обусловленное понижением тонуса вагуса, а приблизительно с 30-го удара вагусный тонус восстанавливается и становится максимальным. Спустя 1—2 мин после перехода в ортостатическое положение происходит выброс катехоламинов и повышается тонус симпатического отдела ве­гетативной нервной системы, что обусловливает учащение ЧСС и увеличение периферического сопротивления, и лишь затем включается ренин-ангиотензин-альдостероновый механизм.

2. Гипердиастолический тип реагирования, связанный с нарушени­ями венозного оттока.



74 Обследуемый предъявляет жалобы на затруднения длительного со­хранения вертикальной позы в статическом положении (стояние в общественном транспорте, очереди и т.п.), склонность к гипотонии, повышенную утомляемость, чувство зябкости в руках. При проведении у него ортостатической пробы произошли следующие изменения кардиогемодинамических показателей.

Уже на 2—3-й мин пробы у пациента возникло чувство тошноты, «тумана в глазах», побледнение лица, холодный пот.

Вопросы: 1. В чем заключается физиологический смысл нагрузочной ортостатической пробы? 2. Как можно оценить реакцию пациента на ортостаз? 3. Недостаточность какого отдела ВНС является доминирующей в выявленных отклонениях от нормальной ортостатической реак­тивности?
1. Нагрузочная ортостатическая проба применяется, в первую оче­редь, для оценки реактивности симпатического и парасимпати­ческого отделов ВНС в регуляции деятельности сердца и выявле­ния толерантности к резким изменениям положения тела в связи с условиями профессиональной деятельности. При переходе из горизонтального положения в вертикальное уменьшается по­ступление крови к правым отделам сердца; при этом централь­ный объем крови снижается на 20 %, минутный объем — на 1—2,7 л/мин. Как следствие снижается артериальное давление, что является мощным раздражителем барорецепторных зон. При этом в течение первых 15 сердечных сокращений происходит уве­личение ЧСС, обусловленное понижением тонуса вагуса, а при­близительно с 30-го удара вагусный тонус восстанавливается и становится максимальным. Спустя 1—2 мин после перехода в ортостатическое положение происходит выброс катехоламинов и повышается тонус симпатического отдела вегетативной нерв­ной системы, что обусловливает учащение ЧСС и увеличение периферического сопротивления, и лишь затем включается ренин-ангиотензин-альдостероновый механизм.

2. Гиподиастолический тип реагирования.

3. Недостаточность симпатического звена регуляции.








75 При проведении велоэргометрической субмаксимальной пробы у двух пациентов было отмечено значительное увеличение ЧСС — до 160 уд/мин, при этом у первого пациента МОК (минутный объем кровообращения) увеличился с 4,5 л до 20 л, а у второго МОК снизился с 4,8 до 4,2л.

Вопросы: 1. Объясните полученный результат. Оцените реакцию на пробу у первого пациента. 2. Адекватна ли реакция второго пациента? 3. С чем может быть связан эффект уменьшения МОК у второго пациента?
1. В первом случае реакция адекватна: физическая нагрузка приво­дит к повышению метаболических трат и как следствие — к росту ЧСС и сердечного выброса и результирующему повышению МОК для активации доставки кислорода к работающим мышцам.

2. Реакция второго пациента — неадекватна.

3. Снижение МОК при высоких значениях ЧСС может быть свя­зан с укорочением фазы диастолы, недополнением левого желу­дочка кровью и, как результат, снижению сердечного выброса и МОК.


76 У экспериментального животного перерезаны депрессорные нервы, в результате него произошло стойкое повышение артериального дав­ления.

Вопросы: 1. Какую ситуацию, возникновение которой возможно в естествен­ных условиях, моделирует эксперимент в перерезкой нервов-де­прессоров? 2. Охарактеризуйте указанные нервы (расположение, физиологи­ческое значение и др.). 3. С чем связано повышение давления?
1. При стойкой артериальной гипертензии происходит адаптация барорецепторов, в результате чего импульсация с них не посту­пает в сосудистодвигательный центр и артериальное давление остается на высоком уровне.

2. Депрессорные (аортальные) нервы: левый начинается центро­стремительными нервными волокнами от расположенных в дуге аорты рецепторов, правый — от барорецепторов правой подклю­чичной артерии. Оба нерва в составе гортанных нервов идут к узловатым ганглиям блуждающих нервов, а оттуда — к продолговатому мозгу. По ним распространяется импульсация при изме­нении артериального давления.

3. При непоступлении информации от барорецепторов происходит торможение центральных нейронов блуждающего нерва и кле­ток, оказывающих влияние на спинальные центры. По принципу сопряженности возбуждаются центры продолговатого мозга, что вызывает усиление работы сердца и уменьшение просвета сосу­дов, в результате чего повышается артериальное давление.


77 У обследуемого мужчины (26 лет) для определения скорости рас­пространения пульсовой волны зарегистрированы реограмма аорты и реовазограмма левого предплечья. Расстояние между электрода­ми в области аорты и первой (проксимально расположенной) парой электродов на предплечье составило 52 см, время задержки пульсовой волны реовазограммы по отношению к реограмме аорты составило 0,05 с.

Вопросы: 1. Рассчитайте скорость распространения пульсовой волны (СРПВ) у пациента и оцените ее величину по отношению к должным значениям: СРПВ должная = 8В + 425 (см/с), где В — возраст обследуемого. 2. О чем свидетельствует скорость распространения пульсовой вол­ны у человека? 3. С чем могут быть связаны выявленные отклонения СРПВ у па­циента?
1. 633 см/с.

2. Скорость распространения пульсовой волны характеризует со­стояние эластичности и тонического напряжения стенок арте­риальных сосудов.

3. Отклонений у пациента не выявлено, значения соответствуют возрастным нормативам.








78 У пациента при рутинном кардиологическом функциональном об­следовании обнаружено удлиненное время атриовентрикулярной за­держки.

Вопросы: 1. На основании какого инструментального исследования возмож­но такое заключение? 2. Как (на основании каких диагностических признаков) был уста­новлен указанный факт? 3. Какие свойства миокарда позволяет оценить данный метод?
1. На основании ЭКГ.

2. Удлинение интервала P-Q.

3. ЭКГ позволяет оценить возбудимость, проводимость, автоматию миокарда.


79 В опыте Клода Бернара при перерезке постганглионарных симпа­тических нервных волокон, иннервирующих артерию уха кролика, от­мечено покраснение уха на стороне перерезки. При раздражении пери­ферического отрезка перерезанного нерва с частотой 1 — 3 Гц отмечено восстановление окраски уха, а при увеличении частоты раздражения до 8 — 10 Гц ухо побледнело (в сравнении с интактным ухом).

Вопросы: 1. С чем связаны выявленные эффекты? 2. Что доказывает эксперимент? 3. Можно ли получить аналогичные (или противоположные) эф­фекты при перерезке парасимпатических нервов?
1. Отсутствие импульсации с симпатических нервных волокон при­водит к расширению сосудов, а раздражение периферического участка нерва восстанавливает тонус сосудов.

2. Эксперимент доказывает, что сосудистый тонус поддерживается в основном симпатическим отделом вегетативной нервной сис­темы.

3. Большинство сосудов не имеет парасимпатической иннервации. Парасимпатическими нервами иннервируются сосуды малого таза, артерии мозга и сердца. При перерезке сосуды суживаются.


80 У обследуемого зарегистрирована реоэнцефалограмма в битемпоральном отведении (электроды в висках) в положении лежа и сразу после принятия вертикальной позы (ортостаз). При вставании отме­чено снижение амплитуды реограммы — реографического индекса — в 2 раза, длительность анакротической части реограммы увеличилась с 0,07 до 0,10 с, длительность полного реографического цикла уменьши­лась с 0,8 до 0,5 с.

Вопросы: 1. Дайте физиологическую интерпретацию указанным сдвигам реографических показателей. 2. Какова физиологическая основа метода? 3. За счет каких механизмов происходит компенсация ортостатического перераспределения крови у здорового человека? 4. Как можно интерпретировать на основе указанных параметров реоэнцефалограммы ортостатическую устойчивость мозгового кровотока обследуемого?
1. При вставании у обследуемого развивается тахикардия, снижа­ется интенсивность мозгового кровотока и повышается тонус артериальных сосудов мозга.

2. Реоэнцефалография применяется для оценки мозгового крово­обращения. Метод основан на регистрации переменной со­ставляющей пульсовых колебаний кровенаполнения головного мозга, что помогает получать информацию о тонусе мозговых сосудов и сосудистой реактивности.

3. Для компенсации ортостатических изменений активируется сим­патическая нервная система. Происходит централизация крово­обращения.

4. Такая реакция расценивается как адекватная в случае компенса­ции отмеченных сдвигов к 3—5 мин ортостаза.









81 У обследуемого проведена проба физической нагрузкой — степ-тест (восхождение на ступеньку высотой 45 см в течение 5 мин) с регистра­цией АД и ЧСС в исходном состоянии и ежеминутно в течение 5 минут восстановительного периода.

В конце проведения пробы обследуемый начал жаловаться на одыш­ку, сердцебиения; пробу прекратили на 5-й минуте ее выполнения.

Вопросы: 1. В чем заключается физиологический смысл нагрузочной пробы с физической нагрузкой (на тестирование каких механизмов она направлена)? 2. Для каких целей ее можно использовать, и есть ли ограничения ее применения? 3. Как можно оценить реакцию пациента на физическую нагрузку, с чем она может быть связана?
1. Нагрузочные пробы позволяют выявить скрытые нарушения приспособительных регуляторных механизмов. Определять ве­гетативную реактивность сердечно-сосудистой системы.

2. Пробу применяют для оценки толерантности обследуемого к фи­зическим нагрузкам, его физической работоспособности, а также возможных признаков нарушения коронарного кровообращения (по изменениям ЭКГ) при выполнении нагрузки. Ограничения ее применения — заболевания кровообращения и дыхания в ста­дии де- и субкомпенсации.

3. Гипертонический тип реактивности. Неадекватное реагиро­вание.


82 У обследуемого для анализа состояния периферического кровотока зарегистрирована сфигмограмма плечевой артерии, амплитуда кото­рой была в два раза ниже нормативных данных, длительность анакротической части составила О,12 с (норма - 0,08 — 0,10), дикротическая волна была практически не выражена, длительность цикла сфигмо­граммы в среднем составила 0,6 с.

Вопросы: 1. Чем могут быть обусловлены выявленные особенности сфигмо­граммы? 2. Какую дополнительную информацию дает анализ сфигмограм­мы по сравнению с пальпаторным исследованием пульсовой волны?
1. Подобные изменения сфигмограммы могут свидетельствовать о повышении сосудистого тонуса и тахикардии, что проявляет­ся при значительной активации симпатоадреналовой системы.

2. Сфигмография позволяет объективизировать анализ пульсовой волны, получить количественные параметры таких характери­стик пульса, как напряжение, наполнение, скорость, что не по­зволяет физикальное пальпаторное исследование.



83 У обследуемого в состоянии оперативного покоя зарегистрированы: ЧСС — 70уд./мин, МОК (минутный объем кровообращения) — 5л/мин. При выполнении физической нагрузки на велоэргометре сердечный вы­брос (ударный объем крови — УОК) у этого обследуемого увеличился на 20%, а ЧСС - на 100%.

Вопросы: 1. Чему равен МОК у обследуемого при выполнении работы на велоэргометре? 2. Как можно оценить гемодинамическую реакцию пациента на физическую нагрузку, и с чем она может быть связана?
1. 11,9л.

2. Реакция пациента на физическую нагрузку адекватна, однако свидетельствует о недостаточной физической тренированности. У физически подготовленных субъектов прирост МОК на фи­зическую нагрузку происходит, как правило, за счет примерно одинакового прироста УОК и ЧСС.









84 При регистрации и анализе ЭКГ у обследуемого выявлено замедление проведения возбуждения от предсердий к желудочкам в 1,5 раза.

Вопросы: 1. Какие изменения на ЭКГ свидетельствуют об этом? 2. Как называются эти изменения?
1. На ЭКГ увеличение интервала P-Q.

2. Замедление проведения возбуждения от предсердий к желудоч­кам называется атриовентрикулярная задержка.



85 У обследуемого юноши, 16 лет, в состоянии покоя (лежа) зареги­стрированы ЭКГ во II стандартном отведении и фонокардиограмма (ФКГ) при положении микрофона в области проекции верхушки сердца. На фонокардиограмме выделены два компонента осцилляции (звуковые феномены), соответствующие: первый — вершине зубца R на ЭКГ, второй — зубцу Т ЭКГ.

Вопросы: 1. Дайте интерпретацию зарегистрированным звуковым феноме­нам. 2. Какова природа их происхождения?
1. Зарегистрированные тоны сердца — первый (систолический) и второй (диастолический) — в норме.

2. Первый тон возникает в начале систолы желудочков (систо­лический) и обусловлен колебаниями атриовентрикулярных клапанов при их закрытии (высокочастотный и высокоампли­тудный компонент) и колебаниями открывающихся полулун­ных клапанов и начальных отделов аорты и легочного ствола при поступлении в них крови (низкочастотный и низкоампли­тудный компонент). Второй тон возникает в период диастолы (диастолический). В нем выделяют два компонента: высокоам­плитудный — связан с напряжением аортального клапана при его закрытии; низкоамплитудный — вызван закрытием клапана легочного ствола.



86 У болельщика футбольной команды, выигравшей кубок России, сразу после матча отмечено повышение артериального давления до 150/100 и ЧСС— до 96 уд./мин. У болельщика проигравшей команды отмечены аналогичные сдвиги показателей кровообращения. Оба относительно здоровы, возраст 25 лет.

Вопросы: 1. С чем связаны изменения кровообращения у первого и второго болельщиков? Каковы физиологические механизмы гипертензии в обоих случаях? 2. У кого из них повышенные значения АД и ЧСС будут дольше сохраняться? 3. Как можно снизить значения указанных показателей без исполь­зования лекарственных средств?
1. Сильные эмоции любого знака запускают симпатоадреналовую реакцию организма, что сопровождается активацией кардиореспираторных функций.

2. У болельщика проигравшей команды (отрицательные эмоции обладают длительным последействием в течение нескольких дней после прекращения действия раздражающего эмоциогенного фактора).

3. Снизить значения АД и ЧСС можно (оперативно) при прове­дении дыхательной гимнастики (активация парасимпатических влияний на сердце — дыхательный рефлекс) или любыми по­веденческими воздействиями, приводящими к положительным эмоциям, которые снижают вегетативное последействие отрица­тельного эмоционального напряжения.








87 Пациенту К., 28 лет, по медицинским показаниям необходимо пере­ливание крови. При определении групповой и Rh-принадлежности крови пациента: кровь II (A), Rh (+). Учитывая результаты лабораторного анализа, больному было перелито 150мл крови группы II (A), Rh (+).

Однако спустя 40 минут после переливания у больного возникли гемотрансфузионные реакции: повысилась температура до 38,5°С, ды­хание и пульс участились, появились одышка, озноб, головная боль, боли в пояснице; АД = 160 и 100 мм рт. ст.

Вопросы: 1. Каковы вероятные причины гемотрансфузионных реакций? 2. Что необходимо было сделать, чтобы предотвратить подобную реакцию организма? 3. Назовите правила переливания крови.
1. Вероятно, причиной гемотрансфузионной реакции явилась био­логическая несовместимость крови донора и реципиента.

2. Чтобы предотвратить подобную реакцию организма, необходимо было провести пробу на биологическую совместимость.

3. При переливании крови необходимо соблюдать следующие правила:

— до переливания определяется групповая принадлежность и резус-фактор крови донора и реципиента, переливают кровь одной групповой принадлежности;

— перед гемотрансфузией (переливанием крови) проводят пробу на биологическую совместимость;

— в случае отсутствия реакции агглютинации при проведении биологической пробы проводят пробу на индивидуальную совместимость: при введении реципиенту 10 мл донорской крови в течение 10—15 мин наблюдают за состоянием паци­ента; при отсутствии жалоб и реакций со стороны организма начинают переливание крови;

— кровь переливается в ограниченном количестве (не более 150 мл).


88 Больной Т. (45лет), по профессии рентгенотехник, поступил в кли­нику с подозрением на хроническую лучевую болезнь.

При проведении анализа крови получены следующие результаты: Нb — 117г/л; эритроциты — 32 х 1012/л; цветовой показатель — 1,0; лейкоциты — 2500/л; базофилы — 0; эозинофилы — 1 %; тромбоци­ты — 75 х 109/л, СОЭ = 16 мм/ч.

Вопросы: 1. Чем отличаются показатели крови данного пациента от показа­телей нормы? 2. Может ли данная картина крови являться следствием воздей­ствия на организм ионизирующего излучения?
1. Показатели крови данного пациента от показателей нормы от­личаются по снижению количества лейкоцитов (лейкопения) и тромбоцитов (тромбопения), показатель СОЭ выше нормы (ускоренное СОЭ);

2. Учитывая тот факт, что профессия пациента связана с иони­зирующим излучением, данная картина крови может являться следствием воздействия на организм вредного фактора (ионизи­рующего излучения). При этом возможно угнетение продукции лейкоцитов и тромбоцитов, что приведет к нарушению защитной функции крови: иммунной и свертывающей.



89 По медицинским показаниям больному требуется переливание 200 мл цельной крови. При определении групповой принадлежности крови пациента — положительная реакция, т.е. агглютинация эри­троцитов наблюдалась с цоликлоном анти-В и отрицательная — с цоликлоном анти-А. Определение резус-фактора по экспресс-ме­тоду с помощью цоликлона анти-Д-супер показало наличие агглю­тинации.

Схематическое изображение полученных результатов.

Вопросы: 1. К какой группе крови по схеме АВО относится исследуемая кровь? 2. Дайте рекомендации по группе (по системе АВО) и резус-при­надлежности донорской крови, которую необходимо перелить пациенту. 3. Перечислите правила переливания крови.
1. Исследуемая кровь по системе АВО относится к III (В) группе Rh(+) крови;

2. Согласно правилам переливания крови, для данного реципиен­та можно использовать кровь донора III (В) группы Rh(+) или Rh(-).

3. При переливании крови необходимо соблюдать следующие пра­вила:

— до переливания определяется групповая принадлежность и резус-фактор крови донора и реципиента, переливают кровь одной групповой принадлежности;

— перед гемотрансфузией (переливанием крови) проводят пробу на биологическую совместимость;

— в случае отсутствия реакции агглютинации при проведении биологической пробы проводят пробу на индивидуальную совместимость: при введении реципиенту 10 мл донорской крови в течение 10—15 мин наблюдают за состоянием паци­ента: при отсутствии жалоб и реакций со стороны организма начинают переливание крови;

— кровь переливается в ограниченном количестве (не более 150 мл).





90 Перед проведением операции у пациента определили групповую и резус-принадлежность крови. При определении групповой принадлеж­ности крови реакция агглютинации наблюдалась с цоликлоном анти-А и анти-В. Определение Rh-принадлежности с помощью экспресс-ме­тода с использованием цоликлона анти-Д-супер показало отсутствие реакции агглютинации.

Схематическое изображение полученных результатов.

Вопросы: 1. К какой группе крови относится и какова резус-принадлежность крови пациента? 2. Какую кровь надо иметь на случай возможного переливания во время операции? 3. Какие еще пробы проводят перед гемотрансфузией (переливани­ем крови)?
1. Исследуемая кровь по системе АВО относится к IV (АВ) группе Rh(—) крови.

2. По правилам переливания крови для данного реципиента можно использовать кровь донора (АВ) группы только Rh(—).

3. Перед гемотрансфузией (переливанием крови) проводят пробу на биологическую совместимость. При проведении пробы важ­но соблюдать пропорции смешиваемых объемов крови донора и реципиента. В случае отсутствия реакции агглютинации при проведении биологической пробы проводят пробу на индиви­дуальную совместимость: при введении реципиенту 10 мл до­норской крови в течение 10—15 мин наблюдают за состоянием пациента, при отсутствии жалоб и реакций со стороны организ­ма начинают переливание крови (не более 150 мл).


91 У женщины (36 лет) появились жалобы на острые боли в живо­те. Боли носят постоянный характер, усиливаются при движении и ходьбе. При пальпации отмечается локальная болезненность в пра­вой подвздошной области. Отменено повышение температуры тела до 38,1°С. В анализах крови: Нb — 110 г/л; лейкоциты — 14 x. 109л; СОЭ — 14мм/ч.

Вопросы: 1. Какие изменения со стороны крови имеются у пациентки? 2. Что такое сдвиг лейкоцитарной формулы влево? 3. Что такое СОЭ, и какие факторы влияют на его величину?
1. Со стороны крови у пациентки имеются следующие изменения: повышение количества лейкоцитов (лейкоцитоз), ускоренное СОЭ, изменения в лейкоцитарной формуле. Данные изменения на фоне имеющихся жалоб могут свидетельствовать о наличие воспалительного процесса.

2. Сдвиг лейкоцитарной формулы влево означает увеличение про­цента незрелых нейтрофилов и указывает на начальный этап за­болевания или на сниженную реактивность организма.

3. СОЭ — скорость оседания эритроцитов, измеряется в мм/час, для определения СОЭ используется прибор Панченкова. На из­менение скорости оседания эритроцитов могут влиять следую­щие факторы: изменение соотношения фракций белков плазмы, изменение вязкости крови, количества эритроцитов, температу­ра, ОЦК, РН крови.


92 Пациент В. (54 года) жалуется на участившиеся приступы удушья, возникающие внезапно и не связанные с определенным временем суток. Во время приступа затруднен выдох, и больной для облегчения выдо­ха занимает вынужденное положение: ищет упор для рук. По данным анализа крови: НЬ — 130 г/л; эритроциты — 4,2% 1012/л; цв. показа­тель — 0,9; лейкоциты — 5х 109/л; базофилы — 5%; эозинофилы — 18%; лимфоциты — 21 %; моноциты — 7%.

Вопросы: 1. Какие изменения имеются со стороны крови у пациента? 2. О чем они могут свидетельствовать?
1. Со стороны крови у пациента имеются следующие изменения: повышение процента базофилов и эозинофилов.

2. Увеличение количества базофилов и особенно эозинофилов сви­детельствует о возможной паразитарной инфекции или аллерги­ческом заболевании. В данном случае изменения в крови и име­ющиеся жалобы более характерны для бронхиальной астмы.









93 В стационар «скорой помощи» доставлен мужчина 43 лет с жа­лобами на сжимающие и давящие боли за грудиной, ощущение серд­цебиения. Отмечается одышка, генерализованная слабость, выраже­но чувство тревоги и страха. Боль не снимается нитроглицерином. При осмотре состояние больного тяжелое: кожные покровы бледные, пульс слабого наполнения, АД = 90 и 50 мм рт. ст., частота дыха­ния — 25 в мин.

Анализ крови при поступлении: НЬ — 121 г/л; эритроциты — 4,7х 1012/л; цв. показатель — 0,7; лейкоциты — 18 x 109/л; СОЭ = 11 мм/ч.

Анализ крови через 4 дня: лейкоциты 15х 109/л; СОЭ = 25 мм/ч.

Вопросы: 1. Какие изменения со стороны крови имеются у больного? 2. Какова причина изменения СОЭ в течение 4 дней? 3. Какие факторы влияют на величину СОЭ?
1. Со стороны крови у больного имеются следующие изменения:

— при поступлении в клинику — повышение количества лейко­цитов (лейкоцитоз);

— через 4 дня — лейкоцитоз и ускоренное СОЭ.

2. Изменение СОЭ в течение 4 дней вызвано тем, что за 4 дня в крови изменилось соотношение белковых фракций плазмы в сторону увеличения крупномолекулярных белков, и это привело к увеличению (ускорению) СОЭ.

3. На величину СОЭ влияют:

— количественное соотношение белков плазмы крови;

— число эритроцитов;

— вязкость крови;

— Ph;

— температура и др.



94 У животного во время проведения эксперимента произошло из­менение генов, приведшее к нарушению структуры гемоглобина, при этом появились признаки гипоксии (увеличение ЧСС и частоты ды­хания). По данным анализа крови отмечено снижение содержания гемоглобина в эритроцитах. Через 2 недели в крови отмечено увели­чение количества эритроцитов, нормализовалась частота сердечных сокращений и частота дыхания (признаки гипоксии постепенно ис­чезли).

Вопросы: 1. Нарушение какой функции крови произошло в эксперименте, чем это было вызвано? 2. Какие компенсаторные реакции привели к снижению проявле­ний гипоксии в организме, в чем они проявились? 3. Какие показатели крови зависят от уровня содержания гемогло­бина?
1. В эксперименте было отмечено нарушение транспортной (ды­хательной) функции крови, а именно— нарушение транспорта кислорода к органам и тканям организма. Это было вызвано сни­жением содержания гемоглобина в эритроцитах крови.

2. При гипоксии в качестве компенсаторных реакций у животно­го было отмечено увеличение частоты сердечных сокращений и увеличение частоты дыхания.

3. От уровня содержания гемоглобина в крови будет зависеть кис­лородная емкость крови, также необходимо помнить о буферной функции гемоглобина — участие в регуляции рН крови.


95 При профилактическом осмотре у женщины 27 лет, при опросе вы­яснилось, что у нее стали появляться небольшие кровоизлияния после незначительных ушибов, раньше такого не наблюдалось. Себя считает здоровой и данное состояние жалобами не считает, объясняет это «жесткой диетой», которую она начала соблюдать.

При более тщательном опросе выяснилось, что из рациона питания полностью исключены жиры. После консультации диетолога встал вопрос о дефиците витаминов, особенно отмечается недостаточность жиро­растворимых витаминов, в частности витамина К. Заболеваний крови у родственников нет, вредностей на работе и месте проживания нет.

Вопросы: 1. Нарушение какой функции крови возможно при дефиците ви­тамина К и почему? 2. Какие анализы крови вы назначите, чтобы подтвердить ваши предположения? 3. Каковы будут ваши рекомендации в данном случае и почему?
1. При дефиците витамина К снижена продукция витамин-К-зависимых факторов свертывания (в первую очередь — протром­бина), это нарушает процесс свертывания крови, что прояв­ляется небольшими кровоизлияниями после незначительных ушибов.

2. В данной ситуации необходимо назначить анализы, позволяю­щие оценить свертываемость крови.

3. Рекомендовать данной пациентке включить в рацион питания животные и растительные жиры, способствующие всасыванию витамина К в толстой кишке.








96 Во время эксперимента у животного 3 л крови были заменены рас­твором со следующими характеристиками: объем — 3 л, рН = 7,35 - 7,45, с аналогичными электролитными характеристиками,Pосм = 6,6 - 6,7 атм.

Вопросы: 1. Как изменится объем циркулирующей жидкости через несколько часов после переливания (уменьшится или увеличится)? 2. Объясните — почему. Какой параметр гемостаза не был учтен? 3. Какие компенсаторные механизмы включатся при изменении объема циркулирующей крови?
1. Объем циркулирующей жидкости уменьшится.

2. Причиной уменьшения объема циркулирующей жидкости яв­ляется перемещение жидкости из просвета сосуда в интерстициальное пространство. Это происходит из-за разницы онкотического давления внутри сосуда и снаружи. Ронк — тот параметр гомеостаза, который не был учтен при замещении крови другим раствором.

3. При изменении объема циркулирующей крови, в данном случае уменьшении, в качестве компенсаторных механизмов возник­нет чувство жажды (питьевое поведение), увеличится частота сердечных сокращений, тонус сосудов изменится (повышение тонуса приведет к уменьшению диаметра), произойдет перерас­пределение кровотока, поступлении крови из депо, усилится эритропоэз (продукция эритроцитов), изменится работа почек (уменьшится).


97 У человека, участвующего в марафонском забеге в Долине Смерти (США) при температуре воздуха около 50°С, через 1 ч бега взяли ана­лиз крови.

Вопросы: 1. Какие гомеостатические параметры крови могли измениться и почему? 2. Какие рекомендации можно дать спортсмену до начала соревно­ваний?
1. Изменятся гомеостатические показатели крови: Росм, рН, вяз­кость крови, объем циркулирующей крови. Это связано, прежде всего, с большой потерей жидкости и электролитов с потом при интенсивной физической нагрузке (во время марафонского бега) при высокой температуре окружающей среды.

2. Учитывая тяжелые климатические условия (50 °С) и интенсивную физическую нагрузку (марафонский бег), можно заранее предпо­ложить возникновение вышеперечисленных изменений в орга­низме. В качестве рекомендаций можно посоветовать спортсмену постоянное (на протяжении всего бега) питье спортивных напит­ков с целью компенсировать потерю жидкости и электролитов.



98 При проведении исследования функционального состояния органов дыхания у испытуемого (мужнина 55 лет, рост 180 см) определили, что жизненная емкость легких равна 4000 мл, индекс Тиффно равен 60 %, а объем анатомического мертвого пространства равен 120 мл. При дополнительных исследованиях установлено, что функция мукоцитов слизистой бронхов не нарушена, инородных тел и опухолевых образований в области дыхательных путей нет. Врач назначил медика­ментозное лечение.

Вопросы: 1. Какие отклонения от нормы отмечены у испытуемого, как это подтвердить? 2. О чем говорят полученные результаты обследования? 3. Какой механизм действия должен быть у назначенного лекар­ственного препарата для устранения выявленных отклонений?


1. С помощью номограмм, а более точно — используя таблицу Клеменса, надо найти должные величины жизненной емкости легких и индекса Тиффно с учетом пола, возраста и роста испытуемого и сравнить их с полученными результатами обследования; объем анатомического мертвого пространства у взрослого человека в норме принимается за 120—150 мл. Очевидным окажется умень­шение индекса Тиффно (норма 70—85 %).

2. Эти результаты говорят о некотором обструктивном сужении дыхательных путей.

3. Из проведенного обследования ясно, что сужение воздухонос­ных путей не связано с накоплением слизи (функция мукоцитов нормальная), инородные тела и опухоли по ходу воздухоносных путей отсутствуют. Вероятная причина — повышенный тонус гладких мышц в стенке бронхов. Следовательно, должен быть назначен препарат, который через (β2-адренорецепторы вызовет расширение бронхов.













99 При подготовке к серьезным соревнованиям спортсмены трениру­ются в условиях высокогорья (примерно 2—3 км над уровнем моря) в течение месяца и больше. Во время разминок, даже в теплое время года, спортсмены одевают утепленные костюмы (греют мышцы). Край­не редко бывают «нарушители», которые дополнительно используют фармакологический препарат, содержащий гормон для усиления физио­логического эффекта тренировок в горах.

Вопросы: 1. Что дают тренировки в условиях высокогорья? 2. Зачем надо разогревать мышцы? 3. О каком гормоне идет речь, и в чем его физиологическое значение? 4. Какой показатель крови может измениться при длительном пре­бывании в условиях высокогорья с отрицательным значением для организма?


1. Тренировки в горах повышают кислородную емкость крови за счет усиления эритропоэза, который стимулируется эритропоэтином. Продукция эритропоэтина усиливается при гипоксии почечной ткани. Гипоксия всех тканей, и почечной в том числе, развивается в результате изменения газообмена между альвеоляр­ным воздухом и кровью (снижение парциального давления О, и СО2 в альвеолярном воздухе при дыхании в условиях понижен­ного атмосферного давления).

2. Тепло, продуцируемое при сокращении скелетных мышц, уси­ливает диссоциацию оксигемоглобина для лучшего обеспече­ния мышц кислородом. Спортсмены стараются лучше и дольше сохранить тепло с помощью теплой одежды, чтобы улучшить оксигенацию мышц.

3. Речь идет о эритропоэтине, который усиливает эритропоэз в красном костном мозге для увеличения кислородной емкости легких.

4. Увеличение количества форменных элементов в крови, в данном случае увеличение содержания эритроцитов, повышает вязкость крови, что негативно сказывается на гемодинамике.



100 В эксперименте на животном исследовали роль афферентных во­локон блуждающего нерва в регуляции дыхания. Эксперимент состоял из нескольких этапов: а) регистрация пневмограммы животного до и после перерезки блуждающего нерва, несущего от механорецепторов легких информацию о степени растяжения альвеол и воздухоносных путей в отдел дыхательного центра, расположенный на уровне про­долговатого мозга; б) регистрация пневмограммы на фоне низкоча­стотной электростимуляции центрального отрезка перерезанного блуждающего нерва; в) регистрация пневмограммы на фоне высоко­частотной электростимуляции центрального отрезка перерезанного блуждающего нерва.

Вопросы: 1. Опишите, какие изменения наблюдались на пневмограммах на всех этапах эксперимента (а, б, в). 2. Объясните причины наблюдаемых изменений. 3. Какова роль блуждающего нерва в регуляции дыхания?
1. В первой части эксперимента (а) после перерезки блуждающего нерва дыхание стало более редким и глубоким. На втором этапе (б) резко увеличивается длительность вдоха. На третьем (в) — вдох прерывается с началом стимуляции.

2. Частота возбуждений, идущих по афферентным волокнам блуж­дающего нерва от механорецепторов легких, отражает параметры полученного результата, т.е. объем воздуха, поступающий в лег­кие в процессе вдоха. В эксперименте искусственно, с помощью электростимуляции центрального отрезка блуждающего нерва, моделировали высокую степень растяжения легких (большая ча­стота стимуляции) и слабое растяжение легких (низкая частота стимуляции). В первом случае вдох сразу прекращался, а во втором — растягивался на более длительное время, хотя необходи­мое количество воздуха уже поступило в легкие.

3. Афферентные волокна блуждающего нерва, несущие информа­цию от механорецепторов легких в центр вдоха и выдоха (про­долговатый мозг), принимают участие в механизме смены вдоха (торможение инспираторных нейронов) на выдох (активация экспираторных нейронов, так как они находятся в реципрокных отношениях с инспираторными нейронами). Этот механизм осо­бенно отчетливо выражен при глубоком дыхании.


101 На двух теплокровных животных сделали операции: а) у первого животного перевязали правый бронх и левую легочную артерию; б) у второго животного перевязали левый бронх и левую легочную артерию. Сразу после операции начали регистрацию пневмограммы, но первое животное очень быстро погибло, второе осталось живым.

Вопросы: 1. Почему погибло первое животное? 2. Нарушение каких этапов дыхания явилось причиной гибели жи­вотного? 3. Опишите и объясните изменения внешнего дыхания у животных.
1. Первое животное погибло от резкой гипоксии.

2. В правом легком было нарушение на первом этапе дыхания: через перевязанный правый бронх воздух не поступал в правое легкое. В левом легком из-за перевязки левой легочной артерии прекратился кровоток, поэтому второй этап дыхания — газооб­мен между альвеолярным воздухом и кровью— отсутствовал. Таким образом, ни через правое, ни через левое легкое организм не получал кислород и не удалял углекислый газ.

3. В первом эксперименте наблюдалось кратковременное судо­рожное дыхание, затем остановка дыхания. Это было вызвано резким сдвигом рН крови (накопление СО2) и снижением уров­ня кислорода, что привело к гипоксии мозга и быстрой гибели животного. Во втором эксперименте, для поддержания О2/СО2 в крови на оптимальном для метаболизма уровне, за счет са­морегуляции произошло компенсаторное увеличение глубины и частоты дыхания, так как левое легкое в дыхании не участвовало, а весь газообмен организма обеспечивался только правым легким.








102 Водолазы в скафандре могут длительное время работать на глубине 100 м и больше, но при подъеме на поверхность они должны соблюдать определенные правила. Одно из них: скорость подъема должна быть мед­ленной, иногда с промежуточным пребыванием в декомпрессионнои ка­мере, иначе у них может возникнуть кессонная болезнь. В то же время тренированные ныряльщики также могут без дыхательной аппаратуры погружаться на большую глубину и через несколько минут быстро выны­ривать, при этом у них не наблюдаются симптомы кессонной болезни.

Вопросы: 1. Какие явления в организме создают предпосылки к развитию кессонной болезни? 2. Почему важно сохранять определенный режим подъема на по­верхность? 3. Почему у ныряльщиков не возникает кессонная болезнь? 4. Какие механизмы саморегуляции после длительных тренировок повышают функциональные возможности человека для пребы­вания его на глубине относительно длительное время без дыха­тельной аппаратуры?
1. Водолаз при погружении под воду дышит воздухом, подаваемым с поверхности под большим давлением; при этом парциальное давление каждого газа в этом воздухе увеличено (погружение на каждые 10 м дает увеличение давления примерно на 1 атм). Чем больше давление газа, тем больше он растворяется в жидкости, в данном случае в крови и в других жидких средах организма. В крови появляется большое количество растворенных газов: кислорода, углекислого газа и азота.

2. При подъеме на поверхность давление падает и пропорциональ­но скорости подъема растворенные газы переходят в газообраз­ное состояние, что сопровождается появлением газовых пузырь­ков в крови. Особенно опасны пузырьки азота: инертный газ не вступает в химические соединения, в отличие от кислорода и углекислого газа, и его пузырьки могут закупорить кровеносные сосуды, что вызовет нарушение метаболизма в соответствующих тканях и органах, т.е. кессонную болезнь. При медленном подъ­еме на поверхность азот может постепенно выводиться из орга­низма без образования большого количества пузырьков, а кис­лород и углекислый газ будут вступать в химические соединения. Для профилактики кессонной болезни при подводных работах в дыхательной смеси азот заменяется на другой инертный газ, который обладает меньшей растворимостью, чем азот.

3. Ныряльщики находятся под водой в течение нескольких минут, перед нырянием они вдохнули воздух при нормальном атмос­ферном давлении, поэтому растворимость газов в крови увели­чилась. Таким образом, предпосылок для развития кессонной болезни нет.

4. Для увеличения срока пребывания под водой без дыхательной аппаратуры необходимы длительные тренировки, которые рас­ширяют функциональные возможности организма. Достигает­ся это за счет механизмов саморегуляции, которые позволяют увеличить кислородную емкость крови: выброс крови из депо, стимуляция эритропоэза, увеличение сродства гемоглобина к кислороду; кроме того, изменяется работа сердца.



103 Проведены исследования по изучению влияния на организм человека дыхания в замкнутом пространстве (мешок Дугласа). Проанализи­рованы два варианта: а) испытуемый совершает вдох и выдох через очень короткую трубку, соединенную со специальным мешком Дугласа, который заполнен атмосферным воздухом; одновременно регистриру­ется пневмограмма, содержание оксигемоглобина в крови и частота сердечных сокращений (исследование прекращается при возникновении одышки); б) испытуемый также дышит через короткую трубку, соеди­ненную с мешком Дугласа, но при этом выдыхаемый воздух проходит через поглотитель углекислого газа; также регистрируется пневмо­грамма, содержание оксигемоглобина и частота сердечных сокращений (исследование прекращается при возникновении одышки).

Вопросы: 1. Какое исследование продолжалось дольше — первое (а) или вто­рое (б)? 2. Какие изменения регистрируемых показателей наблюдаются в первом и втором варианте исследования и почему, и у какого испытуемого они раньше начнутся? 3. Изменения каких гомеостатических параметров в организме приводят к одышке?
1. Второе исследование (б) продолжалось дольше, так как испы­туемый вдыхал из мешка воздух с нормальным содержанием углекислого газа, в то время как в первом исследовании (а) со­держание СО2 быстро увеличивалось за счет поступающего вы­дыхаемого воздуха.

2. У первого испытуемого быстрее увеличивается частота и глубина дыхания, нарастает содержание оксигемоглобина (в начале ис­следования) и растет ЧСС. У второго испытуемого эти изменения будут выражены гораздо слабее и начнутся позже.

Для поддержания газового состава крови на оптимальном для метаболизма уровне включаются механизмы саморегуляции, ко­торые работают в нескольких направлениях:

— изменение внешнего дыхания (увеличение частоты и глуби­ны) за счет увеличения содержания СО, в организме, который гуморально стимулирует дыхание. В первом исследовании это происходит гораздо быстрее, так как испытуемый вдыхает воздух со все нарастающим содержанием СО2, а во втором этого не происходит.





Поделитесь с Вашими друзьями:
  1   2   3   4   5   6   7   8   9   ...   40




©zodomed.ru 2024


    Главная страница